Engineering Overview of ACS SASSI NQA V4.3 Application to Seismic SSI Analysis of Safety-Related NPP Buildings

Ghiocel Predictive Technologies Inc.

Dr. Dan M. Ghiocel Member of ASCE 4 & 43 Standards

Email: <u>dan.ghiocel@ghiocel-tech.com</u> Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com

Part 4: Description of ACS SASSI Advanced Options A-AA and NON

GP Technologies, Inc., Rochester, New York

October 2021

1

Part 4 Presentation Content:

- 1. Option A-AA: Integration with ANSYS Modeling
- 2. Option NON: Nonlinear SSI Analysis for Nonlinear RC Shearwall Structures

1. Option A-AA: Integration with ANSYS Modeling

ACS SASSI-ANSYS Integration Capabilities (Options A and AA)

Two engineering analysis options in ACS SASSI:

i) **One Step analysis** using ACS SASSI for computing overall SSI responses of ACS SASSI or ANSYS FE model (**Option AA**, **AA-R**)

ii) **Two Step analysis** using ACS SASSI in 1st step and ANSYS in 2nd step. The 2nd step uses SSI response as input BCs (Option A).

Option AA-R uses ANSYS for harmonic SSI analysis by exporting the condensed excavated soil impedance matrix from ACS SASSI as a frequency dependent MATRIX50 super-element.

Option A-AA Menu Selections

冾 ACS-SASSI User	r Interface	
Model File Plot	Modules Options View Help	
i 🗆 🖕 🖕 🕌	Location	▶ 🔹 🕨 🥥 💊 👰 🖉
: 🖲 💥 🔍 🍳 🖫	Extension	
Command Histor	EQUAKE	
	SOIL	
	LIQUEF	
	SITE	
	POINT	
	HOUSE	
	PINT	
	FORCE	
	ANALYS	
	COMBIN	
	MOTION	
	STRESS	
	RELDISP	
	NONLINEAR	
	ANSYS Eq. Static Load	Option A AA Specialized
	ANSYS Dynamic Load	Option A-AA Specialized
	ANSYS Super Element Utilities	Analysis Menus

OPTION A: ACS SASSI-ANSYS Interface for SSI Analysis Using ANSYS Models

ACS SASSI-ANSYS interfacing provides useful analysis capabilities:

For structural stress analysis (Demo 5):

 - ANSYS Equivalent-Static Seismic SSI Analysis Using Refined FE Models (including refined mesh, element types including local nonlinearities, nonlinear materials, contact elements, etc.)
 - ANSYS Dynamic Seismic SSI Analysis Using More Refined FE Models (including refined mesh, element types including local nonlinearities, nonlinear materials, contact elements, etc.)

For soil pressure computation (approximate) (Demo 6): - ANSYS Equivalent-Static Seismic Soil Pressure Computation including Soil-Foundation Separation Effects

UI Input for Option A Equivalent Static Option

ANSYS Static Load Converte	r			>
-Data to Add From ACS SA	SSI to the ANALYS mod	lel		
○ Displacement (Acceleration	Disp. and Accel.	⊖ Disp.	for Soil Module
Use Multiple File List Inp	uts			
-SSI Model and Results Inp	ut			
Path	C:\SSI\SSIResults			
HOUSE Module Input	abshear.hou		<<	
Displacement Results	thdlist.txt	<<		<<
Trans. Acceleration Result	s acclist.txt	<<		<<
ANSYS Model and Data In	put			
Dath				
Path	C:\AIVSYS\Results			
Mass Data for Internal Loa	d (Ignore for Displacen	nent)		
Mass Type				
Lumped Mass	Master Node Mass	Generate Mass Da	ata	
For Lumped Mass				
Lumped Mass			<<	
For Master Mass				
Master Node Mass			11	
Master Wode Mass				
ANSYS Output File				
ADPL File AN	SYS_SSI_loads.inp		<<	
	Ük		Cancel	

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

7

UI Input Windows for Option A Dynamic Option

ANSYS Dynamic Load Converter X				
- SASSI Model and Results Inpu	ut			
Path				
HOUSE Module Input		<<		
Ground Acceleration File <<				
Free Field Displacement		<<		
Contact Node Mapping File <<				
ANSYS Model and Data Input	t			
Path				
Rayleigh Damping Coeff.				
Alpha	Beta			
ANSYS Output File				
ADPL File	<<			
Ok	Cancel			

Option A for A Refined Seismic Stress Analysis (Demo 5)

ANSYS Refined Structural Model Using EREFINE command or ANSYS GUI (rank 1-6)

Demo 5

ANSYS Structural Model Automatically Converted From ACS SASSI Using PREP Module

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

10

Option A-Based Nonlinear Analysis for Computing Soil Separation Effects (2nd Step is in ANSYS)

Option A for Seismic Soil Pressure Analysis (Demo 6)

Soil Separation Example Using Two-Step SSI Approach

Figure 193: Case b) SYY Element Center Stresses for "Displacement and Acceleration" Option

Displacement and Acceleration Option SZZ Component at t = 4.105 seconds

Figure 194: Case b): SZZ Element Center Stresses for "Displacement and Acceleration" Option

Figure 198: Case c): SYY Element Center Stresses for "Acceleration" Option

UI Input for Option A Equivalent Static Option

ANSYS Static Load Converter ×							
Data to Add From ACS SASSI to the ANALYS model							
⊖ Displacement ⊖	Acceleration		Disp. a	and Accel.	O Disp.	for Soil	Module
Use Multiple File List Input	s						
SSI Model and Results Input	:						
Path	C:\SSI\SSIResult	ts]		
HOUSE Module Input	abshear.hou				<<		
Displacement Results	thdlist.txt		<<			<<	Rotational Disp.
Trans. Acceleration Results	acclist.txt		<<			<<	Rotational Accel.
ANSYS Model and Data Inp	ut						
Path	C:\ANSYS\Result	5					
Mass Data for Internal Load Mass Type Lumped Mass	(Ignore for Displa Master Node Ma	ss 💽	t)]Genera	ate Mass Data			
For Lumped Mass					_		
Lumped Mass				<<			
For Master Mass							
Master Node Mass				<<			
ANSYS Output File							
ADPL File ANS	/S_SSI_loads.inp			<<			
[Ok				Cancel		

SOILMESH, <Model>,<Scale X>,<Scale Y>, <Hori>, <Vert>,<mX>, <mY>,<Thick>,<Contact> ,<RC num>

The SOILMESH command creates a soil FE mesh for the active model and stores the model data in the user specified Model.
 Model>- User specified integer model number.

- <Scale X> Percentage of growth in the X direction of each level, i.e. 0.07
- <Scale Y> Percentage of growth in the Y direction of each level, i.e. 0.07
- <Hori> Number of horizontal levels to build away from the embedment.
- <Vert> Number of vertical levels to build away from the embedment.
- <mX> Centroid correction in the X direction
- <mY> Centroid correction in the Y direction
- <Thick> Thickness of each new level.
- <Contact> If equal 0 for no contact surfaces, 1 for contact surfaces

<RC num> - Defines the constant set number to be used in ANSYS for the contact surface Real Constants

WARNING: It does not work for nonvertical walls.

Example of ADPL file for Soil FE Model

📃 box_soil.inp - Notepad		
<u>File Edit Format V</u> iew	Help	
<pre>//PREP7 ! Element Type ET,101,CONTA173 ET,102,TARGE170 ET,103,SOLID45 ! Nodes N,145,3,3,3</pre>		^
N,146,3,6,3 N,147,3,13,3 N,148,3,23,3 N,149,3,33,3 N,150,3,43,3 N,151,3,53,3 N,152,3,63,3		
N,153,3,73,3 N,154,3,80,3 N,155,3,83,3 N,158,6,3,3 N,159,6,6,3 N,160,6,13,3 N,161,6,23,3		
N,162,6,33,3 N,163,6,43,3 N,164,6,53,3 N,165,6,63,3 N,166,6,73,3 N,167,6,80,3 N,168,6,83,3		
N,171,13,3,3 N,172,13,6,3 N,173,13,13,3 N,174,13,23,3 N,175,13,33,3 N,176,13,43,3 N 177 13 53 3		
N,178,13,63,3 N,179,13,73,3 N,180,13,80,3 N,181,13,83,3 N,184,23,3,3 N,185,23,6,3 N,186,23,13,3		
N,187,23,23,3 N,188,23,33,3 N,189,23,43,3 N,190,23,53,3 N,191,23,63,3 N,192,23,73,3 N,193,23,80,3		
<	2021 Copyright of Ghiocel Predictive Technologies, Inc All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes	л. Н

UI Input Windows for Option A Dynamic Option

	ANSYS Dynamic Load Converter		×
	SASSI Model and Results Input		
	Path		
	HOUSE Module Input	Compute absolute dis	placements
	Ground Acceleration File	(relative SSI plus free	-field motion).
	Free Field Displacement	Include contact surface	e for ANSYS.
	Contact Node Mapping File		<<
	ANSYS Model and Data Input Path	Useful for ANSYS dyn 2 nd step structure stre (ASCE 4-16 Chapters	namic analysis option for ess nonlinear analysis s 8, 11, 12)
	Payleigh Damping Coeff.		, , , , , ,
	Alpha		
	ANSYS Output File	SOILCONTA	CT Command
	ADPL File		<<
2021 Copyright of Ghiocel Predictive	Ok	Cancel	
Technologies, Inc All Rights Reserved Day ACS SASSI Introductory Training	5-	19	

Notes

OPTION AA: ACS SASSI-ANSYS Interface for SSI Analysis Using ANSYS Models (Demo 7)

OPTION AA uses directly ANSYS structural model for SSI analysis

Sequence of Steps:

- 1) Develop ANSYS *structural* FEA model with no modeling restrictions (any FE type, CP, CE, rigid links)
- 2) If embedded, develop also the ANSYS excavated soil FEA model
- 3) Using an ANSYS ADPL macro generate matrices K, M, C
- 4) Using ACS SASSI UI read ANSYS model .cdb for structure and excavation to convert the ANSYS model geometry configuration to ACS SASSI for post-processing
- 5) Merge Structure and Excavation models using new UI. Add interaction nodes and AFWRITE the SSI model to produce HOUSE input.
- 6) Run SSI analysis using HOUSEFSA and ANALYSFSA

Steps for Running SSI analysis Using ANSYS Model

Using ANSYS with gen_kmc.mac APDL Macro

FOR STRUCTURE ANSYS Model:

At the ANSYS command line input gen_kmc,'.',0,'.'

APDL Macro produces the following files: coosk_r, cooski_r, coosm_r, coosmi_r, coosc_r, coosci_r, and Node2Equ_Stru.map

FOR EXCAVATION ANSYS Model:

At the ANSYS command line input gen_kmc,'.',1,'.'

APDL Macro produces the following files: cooek_r, cooeki_r, cooem_r, cooemi_r, cooec_r, cooeci_r, and Node2Equ_Excv.map

Using ANSYS with gen_kmc.mac APDL Macro

User Interface Procedure to Merge ANSYS Structure and Excavation Models for Option AA

It is assumed that the ground surface is at Z=0. and the FV method will be used

*Convert ANSYS Structure.cdb in Model 1 Actm,1 Convert, ansys, struct.cdb, 32.2 Etypegen,1 Actm,2 Convert, ansys, Soil.cdb, 32.2 * Define excavation elements of type 2 Etypegen, 2 * Create SSI model by combining Models 1 and 2 in Model 3 Actm,3 *MergeSoil*, *1*, *2*, *1*, ..., *mappingfile.txt* Groundelev, 0

Intgen, 1

ANSYS FE Types Compatible with Option AA

•SOLID element types: SOLID45 and SOLID185;

- •SHELL element types: SHELL63 and SHELL181;
- •BEAM element types: BEAM44 and BEAM188;
- •PIPE element types: PIPE288;
- •COMBIN element types: COMBIN14;
- •Couple nodes (CP command) and Constraint equations (CE command)
- •Multipoint constraint element types: MPC184 Rigid Link and Rigid Beam
- Fluid element types: FLUID80 (legacy element).
- MATRIX50 Super Element
 - Included in Option AA using ANSYS model
 - Converted to General Matrix Element for the ACS SASSI Model

REMARK: Not all keyopt or othere parameter values work!

Fluid Surface Acceleration at Center (Input 0.3g)

Pool Water Wave Displacement Response

OPTION AA: ACS SASSI-ANSYS Interface for SSI Analysis Using ANSYS Models (Demo 7)

OPTION AA uses directly ANSYS structural model for SSI analysis

Sequence of Steps:

- 1) Develop ANSYS *structural* FEA model with no modeling restrictions (any FE type, CP, CE, rigid links)
- 2) If embedded, develop also the ANSYS excavated soil FEA model
- 3) Using an ANSYS ADPL macro generate matrices K, M, C
- 4) Using ACS SASSI UI read ANSYS model .cdb for structure and excavation to convert the ANSYS model geometry configuration to ACS SASSI for post-processing
- 5) Merge Structure and Excavation models using new UI. Add interaction nodes and AFWRITE the SSI model to produce HOUSE input.
- 6) Run SSI analysis using HOUSEFSA and ANALYSFSA

Steps for Running SSI analysis Using ANSYS Model

Using ANSYS with gen_kmc.mac APDL Macro

FOR STRUCTURE ANSYS Model:

At the ANSYS command line input gen_kmc,'.',0,'.'

APDL Macro produces the following files: coosk_r, cooski_r, coosm_r, coosmi_r, coosc_r, coosci_r, and Node2Equ_Stru.map

FOR EXCAVATION ANSYS Model:

At the ANSYS command line input gen_kmc,'.',1,'.'

APDL Macro produces the following files: cooek_r, cooeki_r, cooem_r, cooemi_r, cooec_r, cooeci_r, and Node2Equ_Excv.map

User Interface Procedure to Merge ANSYS Structure and Excavation Models for Option AA

It is assumed that the ground surface is at Z=0. and the FV method will be used

*Convert ANSYS Structure.cdb in Model 1 Actm,1 Convert, ansys, struct.cdb, 32.2 Etypegen,1 Actm,2 *Convert, ansys, Soil.cdb, 32.2* * Define excavation elements of type 2 Etypegen, 2 * Create SSI model by combining Models 1 and 2 in Model 3 Actm,3 *MergeSoil*, *1*, *2*, *1*, ..., *mappingfile.txt* Groundelev, 0

Intgen, 1

ANSYS FE Types Compatible with Option AA

•SOLID element types: SOLID45 and SOLID185;

•SHELL element types: SHELL63 and SHELL181;

•BEAM element types: BEAM44 and BEAM188;

•PIPE element types: PIPE288;

•COMBIN element types: COMBIN14;

•Couple nodes (CP command) and Constraint equations (CE command)

•Multipoint constraint element types: MPC184 Rigid Link and Rigid Beam

• Fluid element types: FLUID80 (legacy element).

FLUID30 can be included using the new Option AA-REDUCE or AA-R using a condensed excavated soil stiffness matrix (NuScale SSI methodology for Fluid-SSI analysis)

MATRIX50 Super Element

- Included in Option AA using ANSYS model
- Converted to General Matrix Element for the ACS SASSI Model

REMARK: Not all ANSYS keyopts or all input parameter values work! 32

⁴ ANSYS Super Element (SE) Converted to ACS SASSI Using General Matrix Elements (GM)

Super Element Utility			
ANSYS MATRIX50 Super Element Operation Convert ANSYS SE Matrices to SASSI General Elements Assemble SE Matrices into ANSYS Main Structure Matrices (Option AA)			
SE Matrix Folder	D:\demo_xx\ansys_work		
Main Structure Matrix Folder			
Number of Super Elements	1		
General Matrix ID Start	1		
Element Group ID Start	4		
Input SE Files Names (.sub) One b	oy One:		
	Add		
sldbox_gen	Remove		
General Element Output Folder	D:\demo_xx\sassi_work		
General Element Output File (.pre)	ge_from_se		
Ok	Cancel		

ANSYS Super Element (SE) Using Option AA By Adding Main Model and SE Model Matrices

5

Super Element Utility				
ANSYS MATRIX50 Super Element Operation				
Convert ANSYS SE Matrices	to SASSI General Elements			
Assemble SE Matrices into Al	NSYS Main Structure Matrices (Option AA)			
SE Matrix Folder	d:\demo_xx\ansys_work			
Main Structure Matrix Folder	d:\demo_xx\ansys_work			
Number of Super Elements	1			
General Matrix ID Start				
Element Group ID Start				
- Input SE Files Names (.sub) One	e by One:			
	Add			
sldbox_gen	Remove			
General Element Output Folder				
General Element Output File (.pre	e)			
Ok	Cancel			

Option AA-REDUCE or AA-R
Option AA-R Capability Description

The Option AA-R largely extends the Option AA capability of using directly ANSYS structure FE models for seismic SSI analysis. The Option AA-R ANSYS models are applicable only to the ANSYS Harmonic SSI analysis in complex frequency.

To make Option AA-R more practical a reduced-size soil impedance matrix and a reduced-size seismic load vector are used, based on the condensation of the excavated soil impedance full matrix done in the ANALYS module. There is no loss of accuracy in SSI solution by using the reduced soil matrix and reduced load vector.

Further the frequency-dependent condensed excavated soil matrix and load vector produced by ANALYS can be exported to ANSYS as a superelement (MATRIX50 element) that is attached to the ANSYS structure FE model.

Option AA-R Flowchart for ANSYS SSI Analysis

Excavated Soil Impedance Condensation

For embedded models, the ANALYS module includes a new option to condense the excavated soil impedance matrix. This static condensation is performed for the excavated soil dynamic stiffness matrix $\mathbf{Z}(\omega)$ at each SSI frequency. Then, the SSI response is obtained using the reduced SSI system at each SSI frequency.

Currently the condensed matrix is transferred to ANSYS as a frequency-dependent super element (MATRIX50) via Option AA-R.

The condensed equations of SSI system motion include only the foundation-soil interface nodes, or more generally, the excavated soil model-structure model interface :

$$\begin{cases} \left([C_{ii}^{s}] + \tilde{Z}_{ii} \right) \{ U_{i} \} + [C_{is}^{s}] \{ U_{s} \} = \{ \tilde{F}_{i} \} \\ [C_{si}^{s}] \{ U_{i} \} + [C_{ss}^{s}] \{ U_{s} \} = \{ 0 \} \end{cases}$$

ANSYS SSI Harmonic Analysis Via Option AA-R. ACS SASSI Condensed Soil Matrix Passed to ANSYS

The ACS SASSI condensed excavated soil impedance matrix passed as a superelement (SE) to ANSYS that is automatically integrated with ANSYS structure model.

ACS SASSI ANALYS Run Option for Excavation Soil Impedance Condensation

- **Step 1**: Build the excavated soil model in ACS SASSI or ANSYS. This model should be mesh compatible with the ANSYS structure model to be used via Option AA-R;
- Step 2: Prepare the SSI analysis inputs for ONLY excavated soil model
- **Step 3**: Generate the nodes mapping file, INT_NODES_IF, between the interface nodes of excavation and structure models; see CONDMAP
- Step 4: Run ACS SASSI SSI Modules as follows.
 SITE Module → POINT Module → HOUSE Module → ANALYS with

"Condense Impedance" Option (Mode=7)

After ANALYS completes the condensation matrices and load vectors are generated in the work folder, IMP_EXCVxxx and IMP_EXCV_xxx, plus a equation mapping file DOFSMAP_IMP_EXCV,

• Step 5: Copy the condensation files to the ANSYS work folder for performing ANSYS SSI harmonic analysis later. Next ANSYS will need to be run using the prepared macros installed in \ANSYS\ installation folder

ANSYS SSI Harmonic Analysis Using Condensed soil Impedance and Seismic Load Vectors

- **Step 1**: Make sure your structure model in ANSYS is met the requirements for SSI analysis, pay special attention to define the correct material damping for the model (differences in ANSYS V17 and V19);
- Step 2: Prepare a text file to define the harmonic frequencies for SSI, which would be same frequencies in ACS SASSI analysis;
- Step 3: Run ANSYS, enter the macro "do_cdns_ssi" with right parameters. This macro will call other macros to perform the SSI harmonic analysis using the given frequency data, condensation matrices, and load vectors. The macro does automatically the tasks:.

1> Add the super-element (MATRIX50) to ANSYS structure model;

2> Generate super-element file .SUB using the first frequency

condensation matrix using "*prep_se.exe*" and node mapping information.

3> Do full SSI harmonic analysis for first frequency;

4> Loop over the other frequency doing harmonic analysis;

• Step 4: Post-processing SSI analysis results (generating FILE8)

Option AA-R Files for ANSYS SSI Analysis

The Option AA-R files required for the ANSYS Runs are:

a <u>a constante a constante a</u>	
prep_se.exe	Application
SSI2ANSYS.exe	Application
do_cdns_ssi.mac	MAC File
do_condense_hrm.mac	MAC File
fread_data.mac	MAC File
gen_condense_se.mac	MAC File
use_condense_se.mac	MAC File

To run the ANSYS SSI harmonic analysis, the user needs ONLY to input in the ANSYS command line the name of the **do_cdns_ssi** macro:

do_cdns_ssi,'structure_modelname,'ssi_freqs','txt'

where the *ssi_freqs.txt* file includes the SSI analysis frequencies

ANSYS do_cdns_ssi Macro

```
! do cdns ssi
   2
3
      do cdns ssi Start
   4
5
   6
      do cdns ssi call to few MACROs to perform SSI analysis in ANSYS using
7
        harmonic analysis.
8
         First, it calls MACRO of "gen condense se" to generate super element file
9
        for for first frequency.
        Then, it calls MACRO of "use condense se" to create SE data for first
10
        Last, it calls MACRO of "do condense hrm" to do harmonic analysis frequency
11
        by frequency in the order that is set in the frequency data file.
12
   !****
13
14
      Pre-condition:
15
16
   | * * * *
17
      Call the Macro with the right arguments
18
   1
19
  1
      do cdns ssi, arg1, arg2, arg3,
20 !
21
      ARG1 [chr,sc,in] = ANSYS structure data base file name (.db), i.e.
22
                    'rb test stru'
      ARG2 [chr,sc,in] = The file name of the frequency for SSI analysis, i.e.
23
                    'rb test ssi freq'
24
      ARG3 [chr,sc,in] = file extension name of the frequency for SSI analysis, i.e.
25
  1
26
                    'txt'
  1
27
  1
      EXAMPLE: do cdns ssi, 'rb test stru', 'rb test ssi freq', 'txt',
28
29
      Result will be save in ARG6 & ARG7 components
30
31
   32
   1
   gen condense se, ARG1, 'se dof', 'job name'
33
34 use condense se, job name,
35 ARG72 = ARG2
36 ARG73 = ARG3
37
   do condense hrm, job name, 'SE DOF', ARG72, ARG73,
```

Option AA-R Sensitivity Studies for Embedded RB

Remarks:

- Embedded RB SSI Model has 11195 nodes and 11756 SHELL elements
- Excavated soil includes 20 Embedment Layers (1.2m thickness), 15309 nodes
- Uniform soil with Vs = 720m/s
- Excavation has a regular mesh

ATF for Condensed Excavation ANSYS Using All and Only Half Interface Nodes for FFV (with REDUCE Command)

FFV Model, Node = 9180

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Fully Embedded Structure SSI Model

ATF for Condensed Excavation ANSYS vs. ACS SASSI Using MSM at Higher Elevations

Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Validation of Option AA-R for ANSYS SSI Harmonic Analysis Using Condensed Soil Impedance, V&V Problem 59

Interpolated Acceleration Transfer Function - Node 276 - Z Direction Interpolated Acceleration Transfer Function - Node 276 - Y Direction

2. Option NON:

Nonlinear SSI Analysis for Nonlinear RC Shearwall Structures

Option NON Modeling of Concrete Hysteretic Behavior

Comparative nonlinear SSI analysis results of the hybrid approach against the "true" nonlinear time-integration approach show a good accuracy.

Fast and accurate nonlinear SSI analyses at a small fraction of the runtime of a time domain nonlinear analysis. *Much more robust than nonlinear time integration approaches (see also, Kausel and Assimaki, 2002)*

Reinforced Concrete Shearwall Structure Nonlinear SSI Analysis

Elastic vs. Nonlinear

1st Iteration vs. Last Iteration

Panel 25 Shear Hysteresis Loop Iteration Compare for Equivalent Linear Factor = 0.8, Y Direction 0.6G RG160Y acceleration

Nonlinear Springs Used for Modeling Base-Isolators, Wall-Soil Slippage, or Checking if Building Slides

Nonlinear Structure SSI Analysis Using A Hybrid Frequency-Time Domain Approach (Iterative Coupled Global-Local Iterations)

Linearized SSI Analysis (Complex Frequency Domain)

Nonlinear Structure Analysis (Time Domain)

Nonlinear SSI Analysis Using A Hybrid Frequency-Time Approach based on A Fast Iterative Procedure

The implemented SSI hybrid approach uses an iterative equivalent-linearization (EQL) based on a *global* linearized SSI solution in the complex frequency combined a *local*, "true" nonlinear wall panel behavior in time domain based on the displacement BCs computed from each SSI restart iteration (about twice faster than initial run).

The runtime of a nonlinear SSI analysis based on iterative SSI analyses is only about 2-3 times (4-6 iterations) the runtime of a linear SSI analysis.

Description of Nonlinear SSI Methodology Coupled Iterative Steps

The nonlinear SSI analysis is based on an iterative scheme that includes two separate computational steps at each iteration, as follows:

- <u>Step 1</u>: Perform an *equivalent-linear SSI analysis* in complex frequency via SASSI approach to compute the structural displacements for each nonlinear RC wall, and then,
- <u>Step 2</u>: Perform a *nonlinear time-integration analysis* for each RC wall submodel loaded with the SSI displacements from Step 1, to compute the in-plane shear and bending nonlinear wall responses using *standard-based BBCs and selected hysteretic models*. Then, determine *the equivalent-linear stiffness and damping for each wall* using DRF to be used for next SSI iteration, until converged.

REMARKS:

- 1) <u>Step 1</u> uses the *original, refined FE SSI model*, while <u>Step 2</u> uses a *reduced-order structural model* composed by nonlinear RC walls. Therefore, the nonlinear time-domain Step 2 analysis is extremely fast. For DES, *condensed soil impedance matrix* should be used for SSI iterations (ANALYS option).
- 2) The nonlinear SSI methodology was validated for several shearwall building models against CSI PERFORM3D code, OpenSees 3D FIBER model and 2D MVLEM software, XTRACT, LS-DYNA.

Option NON Assumptions for Nonlinear Wall Deformation

Option NON is applicable to the reinforced concrete structures for simulating the concrete cracking and post-cracking behavior in the shearwalls for the design-level and/or beyond-the-design-level seismic inputs.

The Option NON was validated for the low-rise reinforced concrete shearwall buildings that fail primarily due to the *in-plane shear deformation*. Based on the time-domain hysteretic behavior, the elastic modulus and damping in each concrete wall are modified iteratively based on the local stress and deformation levels. No out-plane nonlinear concrete behavior is considered.

Option NON can also consider the nonlinear concrete behavior due to *the in-plane bending deformation* effects.

In the same nonlinear structure FE model, the analyst can include wall panels that fail due to either the shear deformation or the bending deformation, respectively.

Shear deformation only: *Option NON Simple* Shear & Bending deformation: *Option NON Advanced*

Wall Shear and Bending Deformation Are Computed for Each Wall, at Each Floor Level at Each SSI Iteration

wall vertical edge displacements are linear)

Undeformed edge

Deformed edge

Remark: Rigid body motion is removed. Very important.

Computing Wall Equivalent Dynamic Stiffness and Damping

Nonlinear Shear and Bending Responses Are Computed Based on Each Floor Structural Displacements at Each SSI Iteration

Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Typical Nonlinear Structure SSI Solution Convergence Using Constant DRF for Each Iteration for 5% Accuracy Tolerance

Iterative Equivalent Linearization Using Variable or Constant DRF

The *PSD-based DRF* is computed based on the frequency content of the PSD frequency computed for the nonlinear shear force or bending moment for each wall at each floor level and each iteration.

The DRF is computed based the PSD dominant frequency shifts at each iteration, as shown in the right-side figure.

Hysteretic Responses for PSD-based Variable DRF vs. 0.80 DRF

Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Nonlinear ISRS Computed Using PSD-based DRF vs. 0.80 DRF

SMR with Nonlinear RC Walls and Nonlinear Wall-Soil Interface

Embedded SMR SSI Response Convergence for Nonlinear RC Walls (Panels) and Nonlinear Wall-Soil Interface (Springs) for 0.60g

*Nonlinear-Response-Convergence-Checking - Notepad	Convergence File
File Edit Format View Help	Convergence File
Number of Iteration = 1 Elastic E modulus relative difference between current and previous Damping ratio relative difference between current and previous iter	iteration = 70.738% ation = 2.883%
Number of Iteration = 2 Elastic E modulus relative difference between current and previous Damping ratio relative difference between current and previous iter	iteration = 42.549% ation = 17.882%
Number of Iteration = 3 Elastic E modulus relative difference between current and previous Damping ratio relative difference between current and previous iter	iteration = 54.342% ation = 16.987%
Number of Iteration = 4 Elastic E modulus relative difference between current and previous Damping ratio relative difference between current and previous iter	iteration = 27.948% ation = 11.733%
Number of Iteration = 5 Elastic E modulus relative difference between current and previous Damping ratio relative difference between current and previous iter	iteration = 15.903% ation = 9.445%
Number of Iteration = 6 Elastic E modulus relative difference between current and previous Damping ratio relative difference between current and previous iter	iteration = 13.246% ation = 6.800%
Number of Iteration = 7 Elastic E modulus relative difference between current and previous Damping ratio relative difference between current and previous iter	iteration = 7.132%
Number of Iteration = 8 Elastic E modulus relative difference between current and previous Damping ratio relative difference between current and previous iter	iteration = 4.837% ation = 3.408%

Number of Iteration = 9

Elastic E modulus relative difference between current and previous iteration = 4.251% Damping ratio relative difference between current and previous iteration = 0.838%

Iterative Equivalent E Modulus Due to Shear Effects in SMR Walls

Hysteretic Models Library Available for Nonlinear RC Walls

The hysteretic model library includes 8 types of models applicable to the structure RC walls:

- 1-Cheng-Mertz Shear (CMS)
- 2-Cheng-Mertz Bending (CMB)
- 3-Takeda (TAK)
- 4-General Massing Rule (GMR)
- 5-Maximum Point-Oriented (PO) for Shear per JEAC 4601 App. 3.6

6-Maximum Point-Oriented Degrading Trilinear (PODT) for Bending - per JEAC 4601 App. 3.6 7-Hybrid Shear (HYS) – obtained by combining PO Shear and CMS models 8-Hybrid Bending (HYB) - obtained by combining PODT Bending and CMB models

Cheng-Mertz Shear Hysteretic Model Against HU Wall Test Data

Cheng-Mertz Shear Model (Model 1)

JEAC 4601 Point-Oriented (PO) Shear Model (Model 5)

Hybrid Shear Hysteretic Model Against HU Wall Test Data

Hybrid Shear Model (Model 7)

Remarks for JEAC 4601 Point-Oriented-Degraded-Trilinear (PODT) Bending Hysteretic Model

Hysteretic Damping varies from 0% to 15%; 0% at yielding and 15% at failure (ultimate).

The low hysteretic damping values recommended in the JEAC 4601 are based on a series of experimental tests done for various shearwall configurations and typical NPP structure RC walls with larger thicknesses and reinforcement percentages than those of the RC walls in conventional structures (Taitokui report, 1987). These damping values are lower than those computed using FEA codes.

CM & JEAC 4601 PO Model Hysteretic Loops for Harmonic Inputs

Comparisons of JEAC and ACI/ASCE 4/43 Model SSI Results from Separate Nonlinear SSI Analyses (Including Damping Effects)

Comparisons of JEAC and ACI/ASCE 4/43 Model Loops Based on Separate Nonlinear SSI Analyses (Different Dynamic Effects)

Nonlinear X, Y and Z Responses at Each SSI Iteration

In the current Option NON there is no hysteretic model for handling axial deformation in wall panels under vertical uniform forces. It should be noted that new ASCE 4-16 recommends to reduce only the shear and bending wall stiffnesses due to the concrete cracking, while the axial stiffness remains unchanged. The structure behaves nonlinearly under the horizontal input components and linearly elastic under the vertical seismic component.

The horizontal and vertical displacements computed at the corners of each wall panel shall include for each SSI iteration, the combined effects of the three seismic input components. This is achieved by using the COMB_XYZ_THD auxiliary program that is automatically included in the batch run file generated by the NONLINBAT, 1. The COMB_XYZ_THD.inp text file that is the input of the COMB_XYZ_THD auxiliary should be defined by the user (see example file for the COMB_XYZ_THD auxiliary program included on the installation DVD).

Option NON Simple:

For Low-Rise Shearwall Structures Dominated by Shear Deformation in RC Walls

(NONLINEAR Module)

Applicable to Low-Rise Shearwall Structures

Based on the hysteretic behavior of each wall panel, the local equivalent-linear properties are computed after each SSI iteration. The stiffness reduction is applied directly to the elastic modulus for each panel. This implies, under the isotropy material assumption, that the shear, axial and bending stiffnesses suffer the same level of degradation. Poisson ratio is considered to remain constant.

The wall panel shear stiffness modification as a result on nonlinear behaviour is fully coupled with the bending stiffness. This is a reasonable assumption *only for* the low-rise shearwalls for which the nonlinear behaviour is governed by the shear deformation, while bending effects play an insignificant role.

Based on various experimental tests done at Cornell University, Gergely points out in NUREG/CR 4123, 1984 that in the low-rise walls such as those that occur in the modern nuclear power plants, the flexural distortions and associated vertical yielding play a negligible role. This was also recognized by many other research studies, including the EPRI report on "Methodology for Developing Seismic Fragilities" (Reed and Kennedy, 1994).

Nonlinear Building Model Split in Simple Wall (Shear) Panels

Nuclear building model split in nonlinear panels with different nonlinear properties. Many ACS SASSI User-Interface commands are available: WALLFLR, SPLITWALL, SEGWALLS, etc.

Each panel should be described by its elastic properties, BBC and hysteretic model for inplane shear or bending deformation (Cheng-Mertz for Shear and Bending, and Takeda)

Experimental Test-Based Shear Wall Capacities for Squats

Walls have no openings!

Useful References for Peak Capacity Equations:

- Barda et al.,1977 in the 1994 EPRI Reports could overly estimate
- ACI 349, 2006, Section 11.10, 21.4, based on Barda
- Wood, 1990 small bias, typically less 10% lower, for median capacity
- Gulec and Whittaker, 2009, Eqs. 6.9-6.10, small bias for median capacity

Shearwall Panel 17 Hysteretic Behavior Barda (1977) vs. Wood (1990) for 0.60g Input

Automatic Generation of Backbone Curves (BBC)

BBCGEN,<Panel>,<Shear>,[fc],[fy],[Pn],[....], [CrackingForceLevel] <Panel>

 = 0, the BBC curves will be generated for all panels defined by the user assuming the same command parameters. The Panel = 0 option, it can be used for submodels to define properties of panels in a subset.

= K, the BBC will be generated only for Panel K.

[CrackForceLevel] = 0. Default option for building BBC curves uses new ASCE 4-16 standard recommendation in Section C.3.3.2 for defining the concrete cracking stress level by the value of $3\sqrt{f'_c}$

Shear or Moment CRACKED (0.50 Ec, Max. Damping = 7%) $V = GA_{shear}\gamma$ UNCRACKED (1.0 Ec, Damping = 4%) γ $3\sqrt{f_c}/Gc$ (shear strain)

= Vcr/Vu alue in the [0.1 0.5] interval. Uses the cracking shear/ultimate shear force ratio to build the BBC curves.

Nonlinear Module Input Window

Disp. Factor	Dam	ping Cutoff %	0			
Damping Scale Factor 0	Mate	erial Parameter				
🗌 Use Non-linear Panels 🛛 🗹 Use	Non-linear Sprir	ngs 📃 Use No	on-linear	Beams		
Include Elastic Damping						
Backbone Curve Data						
Backbone Curve 1	•	x		Y	^	
Type 4	1	0.01	10	D		
11	2	0.0223	22	0		
Yield Num.	3	0.0232	22	6		
	4	0.0244	23	2		
	5	0.0205	23	в 4		
	7	0.0374	25	1	~	
Panel Data	Spring Data			Beam Data		
Panel 1	Spring	1		Beam	1	
Group Num	Group Num	6		Group Nur	Ţ	
		1			0	
BBC Num.	Elem Num.			Spring Gr.	0	
Disp Type 0	BBC Num.	1		BBC Num	0	
Force Opt 0	Dof.	1		Force Opt	0	
	Force Opt	4		Beam End 1	0	
				Beam End 2	2 0	

P Command

P,<num>,<group>,<bbc>,<disp>,<force>

This Option NON command defines wall panels for nonlinear structure SSI analysis. This command associates the SSI model data with a finite shell element group to create the wall panel. This command does not define any new groups or elements and no linear SSI model information is changed by this command. All shells in a panel group should be coplanar. Coplanar shell groups can be created by using the WALLFLR command.

- num panel number
- group group number
- . bbc back bone curve number
- . disp displacement type
- . force force option

WALLFLR Command (No Parameter)

The WALLFLR command will take the current active model and delete all of the non shell elements in the model. Then the command will attempt to separate all of the shells into different wall and floors groups based on a coplanarity test of the shell elements. If 5 or more elements are found to be coplanar, then these elements will be put into a new group. All of the elements that were not put into wall or floor groups because there were not enough coplanar shells to form a new wall or floor in a separate group.

SPLITWALLS Command (No Parameter)

This command splits walls (shell groups that are not perpendicular to the global Z axis) by using intersections with other floors (shell groups that are perpendicular to the global Z axis).

This command does not change floors groups. This command should be used before SEGWALLS in most cases.

Nonlinear Structure SSI Input .Pre File (P)

AB_SHEAR_NL.pre

940	L,11,5,0.15,200000,100000,0.01,0.01	—
941	L,12,5,0.15,200000,100000,0.01,0.01	
942	L,13,5,0.15,200000,100000,0.01,0.01	
943	L,14,5,0.15,200000,100000,0.01,0.01	
44	L,15,5,0.15,200000,100000,0.01,0.01	
45	L,16,5,0.15,200000,100000,0.01,0.01	
46	* Real Property Table	
47	R,1,11.111,0,0,17.387,10.288,10.288	
48	R,2,13,0,0,22.316,9.75,20.343	
19	R,3,2.849,0,0,28.958,0.333,28.292	
50	* NonLinear	
51	EQL,0.8,1,0,1,1	
52	P,1,3,1,1,1	
53	P,2,8,2,1,1	
54	P,3,9,3,1,1	
5	P,4,10,4,1,1	
56	P,5,11,5,1,1	
7	P,6,12,6,1,1	PANELGEN com
8	P,7,13,7,1,1	
9	P,8,14,8,1,1	
0	P,9,15,9,1,1	
51	P,10,16,10,1,1	
2	P,11,17,11,1,1	
53	P,12,18,12,1,1	
64	P,13,19,13,1,1	
65	P,14,20,14,1,1	
56	P,15,21,15,1,1	
67	P,16,22,16,1,1	
58	P,17,23,17,1,1	
59	P,18,25,18,1,1	
70	P,19,26,19,1,1	
71	P,20,27,20,1,1	
72	P,21,28,21,1,1	nologies, Inc All Rights Reserved. 5-Day ACS SASSI In
		Training Notos

Nonlinear Structure SSI Input .Pre File (BBCP)

🗎 AB_S	HEAR_NL.pre 🛛	
1057	P,106,113,106,1,1	
1058	P,107,114,107,1,1	
1059	P,108,115,108,1,1	
1060	P,109,116,109,1,1	
1061	P,110,117,110,1,1	
1062	P,111,118,111,1,1	
1063	P,112,119,112,1,1	
1064	P,113,120,113,1,1	
1065	BBCI,1,21,1	
1066	BBCP,1,1,0.00013825,2415.18	
1067	BBCP,1,2,0.000152075,2650.66	
1068	BBCP,1,3,0.0001659,2874.06	
1069	BBCP,1,4,0.000179724,3085.39	
1070	BBCP,1,5,0.000193549,3284.65	
1071	BBCP,1,6,0.000207374,3471.82	
1072	BBCP,1,7,0.000221199,3646.92	
1073	BBCP,1,8,0.000235024,3809.95	
1074	BBCP,1,9,0.000248849,3960.9	
1075	BBCP,1,10,0.000262674,4099.77	
1076	BBCP,1,11,0.000276499,4226.57	
1077	BBCP, 1, 12, 0.000290324, 4341.29	
1078	BBCP, 1, 13, 0.000304149, 4443.93	
1079	BBCP, 1, 14, 0.000317974, 4534.5	
1080	BBCP, 1, 15, 0.000331799, 4612.99	
1081	BBCP,1,16,0.000345624,4679.41	
1082	BBCP, 1, 17, 0.000359449, 4733.75	
1083	BBCP,1,18,0.000373274,4776.02	
1084	BBCP, 1, 19, 0.000387099, 4806.21	
1085	BBCP, 1, 20, 0.000400924, 4824.32	
1086	BBCP, 1, 21, 0.000414749, 4830.36	
1087	BBCP, 1, 22, 0.02, 4926.97	
1088	BBCI,2,21,1	
1089	BBCP, 2, 1, 0.00013825, 805.06	
1090	BBCP, 2, 2, 0.000152075, 883.554	
1091	BBCP, 2, 3, 0.0001659, 958.022	L
1092	BBCP,2,4,0.000179724,1028.46	

BBCI and BBCP Commands

Option NON Simple Application (NONLINEAR Module)

PANEL_EQL_MATL_PROP_IT# Text Files; Iteration 1,4,6

PANEL	_EQL_MATL_	PROP_IT1 - Notepa	🗐 PANE	L_EQL_MATL_I	PROP_IT4 - Note	and Pane	l_eql_matl	_PROP_IT6 - N
File Edit	Format Vie	ew Help	File Edit	Format Vie	w Help	File Edit	Format V	iew Help
00052	519100	0.040000	00052	519100	0.040000	00052	519100	0.040000
00053	444427	0.068024	00053	434881	0.069402	00053	451663	0.067458
00054	519100	0.040000	00054	519100	0.040000	00054	519100	0.040000
00055	428596	0.070299	00055	379428	0.079385	00055	418371	0.071724
00056	399598	0.075423	00056	363115	0.084592	00056	411010	0.073102
00057	357810	0.086960	00057	202701	0.122536	00057	174688	0.140190
00058	296877	0.099000	00058	128331	0.172728	00058	108539	0.188412
00059	519100	0.040000	00059	519100	0.040000	00059	519100	0.040000
00060	519100	0.040000	00060	519100	0.040000	00060	519100	0.040000
00061	519100	0.040000	00061	519100	0.040000	00061	519100	0.040000
00062	519100	0.040000	00062	519100	0.040000	00062	519100	0.040000
00063	519100	0.040000	00063	504400	0.050117	00063	519100	0.040000
00064	427612	0.070436	00064	420231	0.071465	00064	439278	0.068768
00065	430509	0.070032	00065	408232	0.073671	00065	421897	0.071233
00066	329360	0.099000	00066	292851	0.099000	00066	355619	0.087938
00067	497448	0.051490	00067	484745	0.054958	00067	497556	0.051464
00068	495021	0.052083	00068	482626	0.055594	00068	496152	0.051806
00069	486163	0.054532	00069	470562	0.059843	00069	489277	0.053597
00070	519100	0.040000	00070	519100	0.040000	00070	519100	0.040000
00071	492199	0.052772	00071	477685	0.057287	00071	492105	0.052795
00072	519100	0.040000	00072	519100	0.040000	00072	519100	0.040000
00073	332062	0.099000	00073	175308	0.139764	00073	149501	0.157120
00074	433258	0.069637	00074	432823	0.069700	00074	461457	0.064862
00075	428142	0.070362	00075	436629	0.069150	00075	462244	0.064421
00076	423965	0.070945	00076	428687	0.070286	00076	451532	0.067469
00077	323590	0.099000	00077	276456	0.099000	00077	331961	0.099000
00078	519100	0.040000	00078	519100	0.040000	00078	519100	0.040000
00079	493437	0.052469	00079	475545	0.058055	00079	490346	0.053276
00080	490450	0.053245	00080	475535	0.058058	00080	491813	0.052866
00081	305877	0.099000	00081	161111	0.149287	00081	135058	0.167238
00082	519100	0.040000	00082	519100	0.040000	00082	519100	0.040000
00083	432717	0.069715	00083	422270	0.071181	00083	450253	0.067567
00084	423693	0.070983	00084	434374	0.069475	00084	457948	0.066831

Comparative Nonlinear Results Vs. PERFORM3D Code for Low-Rise Shearwall Auxiliary Building (ABSHEAR)

Comparative Nonlinear Shear Strain in Panel 17 for 0.60g (2xDBE)

Low-Rise Aux Building (AB) Include Shear Effects Only

93

Comparative ISRS and ATF Results for 0.60g Input (2x DBE) Node 33 Acceleration Response Spectra Comparison, RGY 0.6g Node 33 Acceleration Transfer Function Comparison, RGY 0.6g

ACS SASSI LINEAR ACS SASSI LINEAR ACS SASSI NONLINEAR ACS SASSI NONLINEAR PERFORM3D Spectra Acceleration Transfer Function Response Node 33 Acceleration Low-Rise Aux Building (AB) **Include Shear Effects Only** ACS SASSI Linear 10 10⁰ 10¹ Frequency [94] ration Transfer Function Comparison, RGY 0.3g **ACS SASSI Nonlinear** Frequency [Hz] Node 243 Acceleration Response Spectra Compar ACS SASS PERFORM3D ACS SASSI LINEAR ACS SASS ACS SASSI NONLINEAR PERFORM3D Spectra Acceleration Transfer Function Acceleration Response **Node 243** 0 0.2 10⁰ 10¹ 10¹ 10 10⁰ 94 Frequency [Hz] Frequency [Hz]

Node 33 (Top) Displacement for 0.60g Input

95

Option NON Advanced:

For RC Shearwall Structures With Interactive Shear & Bending Effects in Walls (Demo 18)

(NONLINEAR Module Plus Other Four Modules)

Main Steps of Option NON Advanced Nonlinear SSI Analysis Based on Standard Practices in US and Japan

Here are the main steps of the procedure:

- 1. Prepare structure FE model.
- 2. Create the *nonlinear RC wall FE submodels* from structure FE model
- 3. Perform *initial SSI analysis* for the gravity and seismic loads
- 4. Perform *automatic wall cross-section geometry identification and automatic section cuts* for each wall at each floor level for the gravity and seismic loads.
- 5. Compute shear and bending BBCs for each wall per US or Japan standard recommendations
- 6. Select hysteretic wall models per US or Japan standard recommendations
- 7. Perform iterative nonlinear SSI analysis using shear and bending hysteretic wall models and combine shear and bending responses at each iteration.
- 8. Post-process the final SSI results for the converged nonlinear response

Option NON Advanced Additional Modules

- The Section_Cuts_for_BBC module Performs automatic wall section geometry identification and computes the wall section-cut forces for userdefined panels
- The BBC_JEAC_ACI_Fiber2D module Computes shear and bending backbone curves (BBC) for all the user-defined panels based on either the US standards or Japan standard recommendations, or 2D Fiber Model
- The Create_Flange_Materials module Creates wall flange nonlinear materials for each wall panel which are used to create a new structure model .pre input file named ModelName_NEW.pre file.
- **COMB_Shear_Bend module** This combines the nonlinear shear and bending interactive effects in wall panels after each SSI iteration.

Option NON Advanced Implementation Flowchart

Steps 1-2: Prepare the 3DFEM with Separate Shell Groups for Walls

Build SSI Model

Analyst creates a 3DFEM for with element groups for each wall.

AB_Model.pre Input File

Analyst uses UI Section-Cut commands to split 3DFEM model into wall submodels

Use UI Section-cut commands to split the 3DFEM model in Wall submodels (Shell Groups). See Demos 18 and 19

The 3DFEM and Wall submodel .pre file are used next to perform automatic section-cuts, section geometry identification for each wall submodel.

Steps 3-4: Perform SSI Analysis for Gravity and Seismic Loads

Step 3:

Perform SSI analysis (Batch)

1) Perform seismic ACS SASSI SSI analysis for the 3DFEM model using "Simultaneous Cases" ANALYS option to get FILE8s for post-processing **Step 4**:

STRESS post-processing runs (Batch):

2) Run STRESS for the seismic inputs in X, Y and Z directions and create three binary DB for each input direction.

3) Run STRESS for the gravity (static) load for Z direction and create gravity binary DB
Combine X,Y,Z STRESS binary BD (B or UI):
4) Use COMBTHSDB to combine the seismic binary DBs for X, Y and Z in a single binary DB.

The Gravity and Seismic binary DBs are used in Step 5 for automatic section-cut calculations.

Step 5: Automatic Section Geometry Identification and Section-Cuts at Each Floor Level

Step 5:

Section_Cut_for_BBC Module_runs (Batch): This module performs automatic section-cuts and identify the section geometries for all floor levels.

Output files:

The Section_Data_for_BBC.out output file produced by the run includes section-cut forces and geometry to be reviewed by the user in Step 6.

The *Modelname_Section_Data.out* as the general output file with input data and section geometry results.

The *Modelname_Section_Data.txt*, *output* file with the section data and other input data for next step

Nonlinear Modeling Wall Behavior Based on US & Japan Practice. Back-Bone Curves (BBC) and Hysteretic Models

BBC Curves: Are trilinear BBCs for both the shear and bending deformation following typical engineering practice, also recommended by the JEAC 4601-2015 Sect.3.5.6 (See figure below)

²⁰²¹ Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Shear BBCs Computed per JEAC 4016-2015 Standard App.3.6

Shear BBCs Computed Based on ASCE 4 & ACI 318 Standards

ACI 318-14 Section 18 for Shear Strength

$$V_n = A_{cv}(\alpha_c \lambda_{\sqrt{f_c'}} + \rho_t f_y)$$

where the coefficient α_c is 3.0 for $h_w / \ell_w \le 1.5$, is 2.0 for $h_w / \ell_w \ge 2.0$, and varies linearly between 3.0 and 2.0 for h_w / ℓ_w between 1.5 and 2.0. any one of the individual wall piers, V_n shall not be taken larger than $10A_{cw} \sqrt{f_c'}$, where A_{cw} is the area of concrete section of the individual pier considered.

Option NON BBC_GENERATION Module Implementation

$$V = \left(\alpha_{e} \sqrt{f_{e}'} + \rho_{H} f_{y} \right) A_{W} \le 10 \sqrt{f_{e}'} A_{W}$$

ASCE 4-16 Section 3

RC wall shear cracking occurs when the shear stress is larger than $3.\sqrt{f_{'e}}$

Trilinear Shear BBC Curve

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Does no depend

on axial force or

bending effects!

Computed Shear BBCs for TB RC Walls in Y-Dir

Bending BBCs Computed Based on US and Japan Standards

Computed Bending BBCs for TB RC Walls in Y-Dir

1.50E-03

1.00E-03

0.00E+00

0.00E+00

5 00F-04

2.50E-03

- - Panel 5-JEAC

2.00E-03

Section_Data_for_BBC.out File from Section_Cuts_for_BBC Module (Step5)

Example for Wall 5 Submodel with 3 Floors (and Sections)

Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Step 6: Analyst Review of Section_Data Files To Prepare Nonlinear Input

User Section Review Adding RC Material Inputs

Section Data for BBC.out (Step 5)

Step 6 *Revised_Section_Data_for_BBC.in* file

Step 6:

Analyst shall edit the Section_Data_for_BBC.out file for checking the automatic generated section-cut geometries (web and effective flanges sizes including floor openings effects). The analyst can modify section parameters based on engineering judgements and need to input concrete and steel nonlinear material parameters. Analyst should save the revised file as *Revised_Section_Data_for_BBC.in* file. This file is used as an input of Step 7.

Section data are provided in international units (kN and m)

Revised_Section_Data_for_BBC. in (Step 6)

		_																		\ I	
1	5							-			1		5								
2	-8.02	264 0.	0000	16.764							2		-8.0264	0.000	0 16.764						
3	1										3		1								
4	0.	949395E+0	5 0.	336417E+07	0.153516E+	-06					-4		0.949	395E+05	0.336417E+07	0.153516E4	-06				
5	-3.36	550 7.	9827	1.5240	7.9827	1.5240	24.079	1.5240	5.0674	5.0674	5		-3.3650	7.982	7 1.5240	7.9827	1.5240	24.079	1.5240	5.0674	5.0674
6	0																				
7 1	.0.00	00 0.	0000	0.0000	0.0000						7		1.1950	1.598	0 1.2460	0.95300					
8 1	0.	248546E+0	8 0.	106216E+08	0.0000E+00	0.0000E+00	0.000000)E+00 0.	.000000E+00	0.0000E+00	8		0.248	546E+08	0.330000E+05	0.2000E-02	0.4000E-02	0.205000E+0	09 0.3	45000E+06	0.1850E-0
9	2										9		2								
10	0.	964498E+0	5 0.	223449E+07	0.193119E+	-06					10		0.964	498E+05	0.223449E+07	0.193119E4	-06				
11	4.74	188 7.	9827	1.5240	7.9827	1.5240	24.079	1.5240	7.3088	7.3088	11		4.7488	7.982	7 1.5240	7.9827	1.5240	24.079	1.5240	7.3088	7.3088
12	0										12		0								
13	.0.00	000 0.	0000	0.0000	0.0000						13		1.1950	1.598	0 1.2460	0.95300					
14	0.	248546E+0	8 0.	106216E+08	0.0000E+00	0.0000E+00	0.00000	E+00 0.	.000000E+00	0.0000E+00	14		0.248	546E+08	0.330000E+05	0.2000E-02	0.4000E-02	0.205000E+0	09 0.3	45000E+06	0.1850E-0
								2021 Cor	nvright of G	iniocel Pred	dicti	ive	- Technol	ogies In	c All					111	
								001	P7. 0. 10 01 0					00.00, 11	0						

Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Revised_Section_Data_for_BBC.in File Data Description

	e fined) where		
	Line 7: PVf1, PVf2, PVw, PHw (Wall Reinf PVf1 = Reinforcement percentage for Flange PVf2 = Reinforcement percentage for Veb (N PHw = Reinforcement percentage for Web (N PHw = Reinforcement percentage for Web (N Line 8: Ec, Fc, Epsc_y, Epsc_u, Es, Fs, E Ec = Concrete E modulus Fc = Concrete Fc strength Epsc_y = Concrete Yielding strain Epsc_u = Concrete Ultimate strain Es – Steel E modulus Fs – Steel Fy yielding Epss_y – Steel Yielding strain Epss_u – Steel Ultimate strain	orcement Percentage) = 1 (top) = 2 (bottom) vertical) horizontal) pss_y, Epss_u These are parameters shall be in for each wall Submodel and each	put by analyst floor level

Repeat line 3 to line 8 for all the sections of the wall.

Revised_Section_Data_for_BBC.in Input for BBC_JEAC_4601_2015 Module

Example for Wall 5 with 3 Floors (and Sections)

```
3
-8.0264
         16.764
                  40.843
                                                                                                              G15 - Panel 23
                                                                                                             G30 - Panel 22
 0.264106E+05 0.409823E+06 0.404182E+05
4.7488
         14,441
                  1.5240
                                     1.5240
                                              24.079
                                                       1.5240
                                                                13.801
                                                                         13.801
                            14,441
 0
                                                                                                              G35 – Panel 21
1,1950
         1.5980
                  1.2460
                           0.95300
0.248546E+08 0.3300E+05 0.200E-02 0.400E-02 0.205000E+09 0.3450E+06 0.185E-02 0.500E-01
 2
 0.228232E+05
                0.188437E+06 0.358970E+05
                                                                                       Section data are provided only in
11.924
         14,441
                  1.5240
                                     1.5240
                                              24.079
                                                       1.5240
                                                                17.650
                                                                         17.650
                            14,441
                                                                                       International system (kN and m)
 0
1,1950
         1.5980
                  1.2460
                           0.95300
0.248546E+08 0.3300E+05 0.200E-02 0.400E-02 0.205000E+09
                                                                0.3450E+06 0.185E-02 0.500E-01
 3
 0.124042E+05 0.371685E+05 0.215392E+05
                                                                                       If D=0, use 2D Fiber Model
                                              24.079
19.391
         14,441
                  1.5240
                           14,441
                                     1.5240
                                                       1.5240
                                                                20,946
                                                                         20,946
 0
1,1950
         1.5980
                  1.2460
                           0.95300
0.248546E+08 0.3300E+05 0.200E-02 0.400E-02 0.205000E+09 0.3450E+06 0.185E-02 0.500E-01
                                                                                                             113
```

BBC_JEAC_ACI_Fiber2D Module Run and Files (Step 7)

Step 7 BBC_JEAC_ACI_Fiber2D Run

BBC Shear.pre & BBC Bending.pre files

(B)

Step 7:

Batch *BBC_JEAC_4601_2015* **Module V4.3.1 or** *BBC_JEAC_ACI_Fiber2D* **Module V4.3.2 run – for Directional Walls:** This module computes the shear and bending BBC for each Wall submodel based on JEAC 4601-2015 App.3.7 approaches. For the shear BBC, the ultimate state shear stress is computed for both exterior walls (App.3.7 equations) and internal walls (Ref.App.3.7-14).

Output files for each RC Wall Submodel:

The computed shear BBC are saved in two text files, namely *Modelname_BBC_.out and BBC_Shear.pre.* The units in the output file are N and mm for International units or Kip and ft for British units and it depends on how the 3DFEM model is defined in the .pre input file. The output file contains the computed shear stress in N/mm2, while in the BBC_Shear.pre file the shear force in given kN or Kip.

The computed bending BBC are saved in three files, the *BBC_JEAC_4601_Data.out* file *and two BBC_Bending.pre* files, one .pre file for minimum moments and one .pre file for average moments. The minimum and average moments are computed based on two cases: 1) Flange 1 is in compression and 2) Flange 1 is in tension. The moment units in the output file are kN-m, while in the *BBC_Bending.pre files* is given in kN-m or Kip-ft. Analyst has to decide if uses minimum or average moments. *BBC_JEAC_ACI_Fiber2D* Module V4.3.2 run – for Non-directional Walls (closed sections, circular, square, composite): Computes the shear and bending BBC for each Wall submodel based on 2D Fiber model and shear area numerical integration for non-planar walls (without flanges). The 2D Fiber Model is launched when Dw=0, i.e. the flange and web identification fails.

Bending BBCs Computed for External and Internal Walls Using BBC_JEAC_ACI_Fiber2D Module (per JEAC 4601)

Modelname_Wall#.txt File With Section Data Based on JEAC 4601 (Step 7)

1																
2 3 4	Geometri	c Input I	Data:		Se	ection	Geom	etries a	nd Ma	terial	l Prop	perties				
5	Z Coordina	ate of Wa	all Bottom	-8.026												
6							Web		Nor	th Flan	ge		South F	lange		
7	Section#	Z-Loca	ation	Ic	Ie	Dw	Tw	Pvw	L1	т1	 Pvf1	L2	т2	Pvf2		
8				(m4)	(m4)	(mm)	(mm)	(%)	(mm)	(mm)	(%)	(mm)	(mm)	(%)		
9	1	-3.36	550	3149.	3444.	24079.	1524.	1.246	5067.	1524.	1.195	5067.	1524.	1.598		
10	2	4.74	188	4019.	4400.	24079.	1524.	1.246	7309.	1524.	1.195	7309.	1524.	1.598		
11	3	11.92	240	4318.	4728.	24079.	1524.	1.246	8078.	1524.	1.195	8078.	1524.	1.598		
12	4	19.39	910	4502.	4931.	24079.	1524.	1.246	8553.	1524.	1.195	8553.	1524.	1.598		
13	5	27.49	960	4610.	5050.	24079.	1524.	1.246	8832.	1524.	1.195	8832.	1524.	1.598		
14																
15																
16	Material	Properti	les:													
17																
18	Section#	AS	Fc	Ec	GC	epsc_y	epsc_u	Fs	Es	Gs	epss	_y epss	_u	sigm_v	Pv	Ph
19		(m2)	(N/mm2)	(N/mm2)	(N/mm2)	(%)	(%)	(N/mm2)	(N/mm2)	(N/mm2) (%)) (%)		(N/mm2)	(%)	(%)
20	1	32.05	33.00	24855.	10356.	0.200	0.400	379.50	205000.	854	17. 0	.185 5.0	00	1.821	1.246	0.953
21	2	32.05	33.00	24855.	10356.	0.200	0.400	379.50	205000.	854	17. 0	.185 5.0	00	1.635	1.246	0.953
22	3	32.05	33.00	24855.	10356.	0.200	0.400	379.50	205000.	854	17. 0	.185 5.0	00	1.184	1.246	0.953
23	4	32.05	33.00	24855.	10356.	0.200	0.400	379.50	205000.	854	17. 0	.185 5.0	00	0.574	1.246	0.953
24	5	32.05	33.00	24855.	10356.	0.200	0.400	379.50	205000.	854	17. 0	.185 5.0	00	0.021	1.246	0.953
25																
26						Ch	hoar B	BC Info	rmatio	n						
27	Shear Fo	rce Outpu	its:			J	ieai D		illialiu							
28																
29	Section#	M/QD	Tao1	Gamma1	г	lao2 Ga	mma2	Tao3 (EX.) Tao3 (IN.)	Gamma3					
30			(N/mm	2)	(N	V/mm2)		(N/mm2)	(N/mm	2)		Section	data ar	e provic	led onl	v in
31	1	0.910	2.5325	0.2445E-0	03 3.	4189 0.7	336E-03	5.9927	4.0886	0.4000	E-02					,
32	2	0.481	2.4665	0.2382E-0	03 3.	3298 0.7	145E-03	6.4529	4.1516	0.4000	E-02	Internat	tional sv	stem (N	and m	nm)
33	3	0.322	2.2978	0.2219E-0	03 3.	1020 0.6	656E-03	6.5434	4.1287	0.4000	E-02					
34	4	0.208	2.0479	0.1977E-0	03 2.	7647 0.5	932E-03	6.5666	4.0803	0.4000	E-02	per JEA	AC 4601	App 3	. / equa	ations
35	5	0.191	1.7914	0.1730E-0	03 2.	4184 0.5	189E-03	6.4796	4.0320	0.4000	E-02					
36																

Modelname_Wall#.txt File With Section Data Based on JEAC 4601 (Step 7)

Demaining DDO innormation

50										
51							M1 Calcu	ulation)		
52	Section#	Load	Cx	Ze		Mc (KN*M)		F	hi (1/m)	
53		Direction	1 (mm)	(m3)	Value	Average	Minimum	Value	Average	Minimum
54	1	1	12040.	286.	0.1145E+07			0.1464E-04		
55	1	2	12040.	286.	0.1145E+07	0.1145E+07	0.1145E+07	0.1464E-04	0.1464E-04	0.1464E-04
56	2	1	12040.	365.	0.1395E+07			0.1397E-04		
57	2	2	12040.	365.	0.1395E+07	0.1395E+07	0.1395E+07	0.1397E-04	0.1397E-04	0.1397E-04
58	3	1	12039.	393.	0.1322E+07			0.1232E-04		
59	3	2	12039.	393.	0.1322E+07	0.1322E+07	0.1322E+07	0.1232E-04	0.1232E-04	0.1232E-04
60	4	1	12040.	410.	0.1129E+07			0.1009E-04		
61	4	2	12040.	410.	0.1129E+07	0.1129E+07	0.1129E+07	0.1009E-04	0.1009E-04	0.1009E-04
62	5	1	12040.	419.	0.9245E+06			0.8068E-05		
63	5	2	12040.	419.	0.9245E+06	0.9245E+06	0.9245E+06	0.8068E-05	0.8068E-05	0.8068E-05
64										

48 49

50

Bending Moment Outputs:

		M2 Calcula	tion					M3 Calculat	ion		
	Mc (KN*M)		Pl	hi (1/m)		I	Mc (KN*M)		Phi	(1/m)	
Value	Average	Minimum	Value	Average	Minimum	Value	Average	Minimum	Value	Average	Minimum
0.2873E+07			0.1119E-03			0.3791E+07			0.2006E-02		
0.2628E+07	0.2751E+07	0.2628E+07	0.1102E-03	0.1110E-03	0.1102E-03	0.3534E+07	0.3662E+07	0.3534E+07	0.2204E-02	0.2105E-02	0.2006E-02
0.3424E+07			0.1083E-03			0.4331E+07			0.2166E-02		
0.3060E+07	0.3242E+07	0.3060E+07	0.1064E-03	0.1073E-03	0.1064E-03	0.3943E+07	0.4137E+07	0.3943E+07	0.2127E-02	0.2147E-02	0.2127E-02
0.3365E+07			0.1052E-03			0.4239E+07			0.2104E-02		
0.2959E+07	0.3162E+07	0.2959E+07	0.1033E-03	0.1042E-03	0.1033E-03	0.3809E+07	0.4024E+07	0.3809E+07	0.2065E-02	0.2085E-02	0.2065E-02
0.3100E+07			0.1017E-03			0.3933E+07			0.2035E-02		
0.2671E+07	0.2885E+07	0.2671E+07	0.9971E-04	0.1007E-03	0.9971E-04	0.3479E+07	0.3706E+07	0.3479E+07	0.1994E-02	0.2014E-02	0.1994E-02
0.2811E+07			0.9840E-04			0.3601E+07			0.1968E-02		
0.2360E+07	0.2586E+07	0.2360E+07	0.9665E-04	0.9752E-04	0.9665E-04	0.3135E+07	0.3368E+07	0.3135E+07	0.1933E-02	0.1950E-02	0.1933E-02

Create_Flange_Materials Module Run (Step 8)

(B)

Step 8 Create_Flange_Materials Run AB_ShearWall_New.pre_file

Step 8:

Create_Flange_Material Module is run to create a new FE model including additional effective flange width materials. Creates a new structure FEA model, *Modelname_New.pre*

Include New Flange Materials for Nonlinear Modeling – Case 3

S =1 is for including shear effective Es for corner flanges (exterior walls)

S = 0 (default) is for not including Es for corner flanges.

For separate inputs, the wall perpendicular to input direction remain elastic (M3, M4 for Y input, and M1, M2 for X input)

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

7

E & D Material Changes For Flanges 1 & 2 Are at Two Wall Web Ends

Effective Flange Size Calculations Implemented in Option NON

ACI 318 Option 1 in NON

The first ACI 318 option (Section 18.10.5.2) is recommended by the standard for modeling the RC walls, and the effective wall flange widths computation is based on the shear lag effects on the stress distribution in perpendicular walls at the intersection with the parallel walls. The shear lag effect is larger for larger nonlinear story drifts and axial loads.

ACI 318 Option 2 in NON

The second ACI 318 option (Section 6.3.2.1) is not recommended by the standard for modeling the RC walls. This option uses the effective wall flange width equations for the effective beam flange widths, basically, assuming that the beams represent the vertical RC walls. This assumption is conceptually consistent with the Japanese AIJ RC standard requirements for computing the effective wall flange widths.

JEAC 4601 Option in NON

Per the JEAC 4601-2015 standard implementation in practice based on the SR/Stick models and the Case 4 directional approach, the effective wall flange widths are determined using the effective beam flange widths computed per the AIJ RC standard equations. The effective flange widths conceptually reflect the variation with height of the effective bending stiffnesess for RC wall parallel to the input direction 2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Effects of Effective Flange Sizes on Nonlinear SSI Responses

The new Option NON implementation uses three calculation options per JEAC 4601 and ACI 318:

ACI 318-19 for Wall Effective Flange Widths Per Section 18.10.5.2 (ACI recommended)

For the two-*sided* wall flanges, B1 and B2, then, the effective wall flanges are computed based on the side clearances, <u>AR</u> and AL, at each floor level I, as follows:

ACI 318 Option 1

JEAC 4601/AIJ RC

 $B1_{i} = min \begin{cases} \frac{1}{2}ARi\\ 0.25 (H - Zsect, i) \end{cases}$ $B2_{i} = min \begin{cases} \frac{1}{2}ALi\\ 0.25 (H - Zsect, i) \end{cases}$

Where H-Zsect, i is the height of the structure above the i section level, Zsect,i

 $L1C_i = B1_i + Tw_i + B2_i$

 $L2C_i = L1C_i$

The above equations are also used for the one-sided wall flanges.

JEAC 4601-2015/AIJ RC Standard:

$$B1_{i} = \begin{cases} \left(0.5 - 0.3 * \left(\frac{AR}{L_{i}}\right)\right) * AR, & \text{if } AR < L_{i} \\ 0.2 * L_{i}, & \text{else} \end{cases}$$
$$B2_{i} = \begin{cases} \left(0.5 - 0.3 * \left(\frac{AL}{L_{i}}\right)\right) * AL, & \text{if } AL < L_{i} \\ 0.2 * L_{i}, & \text{else} \end{cases}$$
$$L1C_{i} = B1_{i} + Tw_{i} + B2_{i} \end{cases}$$

2101 211 111

 $L2C_i = L1C_i$

ACI 318-19 for Wall Effective Flange Widths Per Section 6.3.2.1 (conceptually <u>similar to</u> AIJ RC modeling requirements, but not ACI recommended)

a. If the panel i has two side flanges, B1i and B2i.

$$B1_{i} = min \begin{cases} \frac{1}{2}AR\\ 8\,Tw_{i} \end{cases}$$

$$B2_{i} = min \begin{cases} \frac{1}{2}AL\\ 8\,Tw_{i} \end{cases}$$
Check also $B1_{i} + B2_{i} \leq \frac{1}{4}L_{i}$

b. If the panel has only one side flange

$$B1_{i} = min \begin{cases} \frac{1}{12} L_{i} \\ 6 Tw_{i} \\ \frac{1}{2} AR \end{cases}$$
$$B2_{i} = min \begin{cases} \frac{1}{12} L_{i} \\ 6 Tw_{i} \\ \frac{1}{2} AL \end{cases}$$
$$L1C_{i} = B1_{i} + Tw_{i} + B2_{i}$$
$$L2C_{i} = L1C_{i}$$

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

122

ACI Effective Flange Sizes Impact on Wall Response for 0.70g Input

Integrate Final Model and Perform Nonlinear Analysis (Steps 9,10)

Step 9 UI is Used to AFWRITE New Inputs Generate New .Hou and .Eql Input Files (UI)

Step 9:

User integrates the Modelname_New.pre file with BBC .pre files to create a complete input for NONLINEAR module. This can be done automatically by using a UI script as shown in Demos 18 and 19.

	Option	NON Nonlinear SSI Analysis (B	atch F	Run)
0	ton 10	Shear and bending effects are combine	ed at e	ach
0	tep 10	SSI iteration using COMB_Shear_Ber	d Mod	lule
	(B)	File8 files for converged SSI solution	on	
S	tep 11	Final SSI Post Processing	(B)	(11)
	and the	Final 331 FOST-FIDCessing	(U)	

Step 10:

Option NON Nonlinear SSI Analysis Batch Run

The new Option NON includes new hysteretic models (2 JEAC 4601 models and 2 Hybrid models) applicable for both the shear and bending wall in-plane deformation for 3DFEM (Shell models). The shear and bending deformation can be combined using the *COMB_Shear_Bend* module as described in Demos 18 and 19.

Step 11:

Post-Processing:

The main results of the nonlinear SSI analysis are the FILE8 and FILE4 (.n4) files for the converged solution that can be post-processed exactly like for a linear analysis to compute structural node displacements and accelerations, and element stresses.

Modeling of Interaction Between Shear and Bending Effects

These interaction effects are included at each SSI iteration by the following Option NON options:

- 1) <u>Shear Governing</u>: Assuming that the shear stiffness variations are governing the wall stiffness degradation at each SSI iteration (*RC wall material stiffness degradation based on the Shear hysteretic models only, i.e. material Esb=Es, fully coupled*)
- 2) <u>Bending Governing</u>: Assuming that the bending stiffness variations are governing the wall stiffness at each SSI iteration (RC wall material stiffness degradation based on the Bending hysteretic models only, i.e. material Esb=Eb, fully coupled)
- 3) <u>Shear and Bending</u>: The equivalent bending and shear stiffnesses are computed independently at each SSI iteration (*RC wall material stiffness degradation based on both Shear and Bending hysteretic models, i.e. material Esb is different from Es and Eb*). An elliptical interaction curve for combining the shear and bending stiffnesses is applied at each SSI iteration.

Nonlinear Shear-Bending Interaction Effects (Comb_Shear_Bend)

Computed ISRS for 0.70g: 1) Shear Governing, 2) Bending Governing and 3) Combined Shear and Bending with M1

Combining Shear and Bending Interaction Effects Stiffness. Comparing ISRS Results for M1 and M2 Methods

ABSHEAR - Comparative Results for US and Japan Standards

Training Notos

Iterated ATF Response Using Same Hysteretic Models for US and Japan Design Practices

Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Iterated ATF for JEAC PO Models and CM Models with D<10%

Shear Hysteretic Response for JEAC PO and CM with D<10%

Iterated ISRS for JEAC PO Models and CM Models with D<10%

Iterated Walls Stiffness and Damping for 0.70g RG1.60 Input

Using JEAC PO and CM Models with Damping < 10% per ASCE 4 Section 3 Recommendation

Nonlinear SSI Analysis for Surface and Embedded SMR SSI Models (Demo 19)

(Including 2D Fiber Model)

Handling Complex Geometries Using Multiple Submodels (.pre)

Splitting SMR Model in 9 Wall Submodels

Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

SMR Wall Submodels (4 Exterior, 1 Circular, 4 Connections)

SMR Panel Numbering for Circular Closed Section Wall

Circular Section Shape Verification of 2DFiber Model vs. XTRACT (BBC_JEAC_ACI_Fiber2D.exe)

Shear Wall Reinforcement: Vertical Rebar Ratio = 1% Horizontal Rebar Ratio = 1%

Concrete Material Properties:

Elastic Modulus = 24400000 (kN/m2) Compression Strength = 30000 (kN/m2) Yield Strain = 0.002 Ultimate Strain = 0.0035

Rebar Material Properties:

Young modulus = 200,000,000. (kN/m2) Yield Strength = 345000. (kN/m2) Yield strain = 0.001725 Ultimate strain = 0.10

Axial force N=2500 KN, with mesh_size=50mm.

SMR Wall Verification of 2D Fiber Model vs. JEAC 4601. SMR Model – V&V Problem 65 for V4.3.2

Shear Wall Reinforcement:

Flange 1 Vertical Rebar Ratio = 1.195% Flange 2 Vertical Rebar Ratio = 1.598% Web Vertical Rebar Ratio = 1.246% Web Horizontal Rebar Ratio = 0.953%

Concrete Material Properties:

Elastic Modulus = 24854600 (Kn/m2) Compression Strength = 33000 (Kn/m2) Yield Strain = 0.002 Ultimate Strain = 0.004

Rebar Material Properties:

Young modulus = 205000000. (Kn/m2) Yield Strength = 345000. (Kn/m2) Yield strain = 0.00185 Ultimate strain = 0.05

JEAC 4601 vs. 2DFiber Shear BBC (BBC_JEAC_ACI_Fiber2D.exe)

JEAC 4601 vs. 2DFiber Bending BBC (BBC_JEAC_ACI_Fiber2D.exe)

1st Floor Exterior Wall Response Using JEAC 4601 and ACI 318 Option 1

SHEAR

BENDING

Displacements in SMR Using JEAC 4601 and ACI 318 Option 1

SMR Structure Top Corner

RVC Mid Elevation

ISRS in Surface SMR Using JEAC 4601 and ACI 318 Option 1

Embedded SMR with Nonlinear Springs at Soil Interface for 0.60g

Adjusted Tangential Spring BBCs for Soil Interface as Function of Depth. Applied General Massing Hysteretic Soil Model (Model 4)

Nonlinear Side-Soil Spring BBC as Function of Depth Using GM Hysteretic Model (Model 4 for Tangential Springs)		Top KX, KY and KZ	Crack displ	Crack Force	Yelding displ	Yielding Force	Ultimate Disp	Ultimate
		ACE 1.00E+06	3.00E-06	3.00E+00	1.50E-03	15	1	1
		1 1.00E+06	3.42E-06	3.42E+00	1.71E-03	17.07628	1	20.4915
		2 1.00E+06	4.02E-06	4.02E+00	2.01E-03	20.09801	1	24.1176
		3 1.00E+06	4.62E-06	4.62E+00	2.31E-03	23.11973	1	27.7436
		4 1.00E+06	5.23E-06	5.23E+00	2.61E-03	26.14146	1	31.3697
	-4.3 ft Depth	5 1.00E+06	5.82E-06	5.82E+00	2.91E-03	29.09292	1	34.911
	60.8 ft Depth	6 1.00E+06	6.42E-06	6.42E+00	3.21E-03	32.11465	1	38.5375
	— 118 ft Depth	7 1.00E+06	7.03E-06	7.03E+00	3.51E-03	35.13638	1	42.1636
		8 1.00E+06	7.65E-06	7.65E+00	3.82E-03	38.22838	1	45.8740
		9 1.00E+06	7.65E-06	7.65E+00	4.13E-03	38.22838	1	45.8740
		10 1.00E+06	7.65E-06	7.65E+00	4.44E-03	38.22838	1	45.87405
		11 1.00E+06	7.65E-06	7.65E+00	4.75E-03	38.22838	1	45.8740
		12 1.00E+06	7.65E-06	7.65E+00	5.06E-03	38.22838	1	45.87403
0.1 0.2 Shear Stress)E+06	7.65E-06	7.65E+00	5.37E-03	38.22838	1	45.87405
	BBCs are computed	Dased DE+06	7.65E-06	7.65E+00	5.68E-03	38.22838	1	45.87405
	on the increasing stat	tic soil ^{E+06}	7.65E-06	7.65E+00	5.99E-03	38.22838	1	45.87405
	nressure on the later	al wall ^{E+06}	7.65E-06	7.65E+00	6.30E-03	38.22838	1	45.87405
		E+06	7.65E-06	7.65E+00	6.61E-03	38.22838	1	45.87405
Depth	down to layer 8 for wh	NICN)E+06	7.65E-06	7.65E+00	6.91E-03	38.22838	1	45.87405
	the shear stress is all	bove E+06	7.65E-06	7.65E+00	7.22E-03	38.22838	1	45.87405
	2kef (API standard)	Thon E+06	7.65E-06	7.65E+00	7.53E-03	38.22838	1	45.87405
		E+06	7.65E-06	7.65E+00	7.84E-03	38.22838	1	45.87405
	shear spring BBC sta	I <mark>YS</mark> E+06	7.65E-06	7.65E+00	8.16E-03	38.22838	1	45.87405
	the same for larger depth	epths. E+06	7.65E-06	7.65E+00	8.47E-03	38.22838	1	45.87405
	Jer en ger en ger en)E+06	7.65E-06	7.65E+00	8.78E-03	38.22838	1	45.87405
		25 1.00E+06	7.65E-06	7.65E+00	9.09E-03	38.22838	1	45.87405
		26 1.00E+06	7.65E-06	7.65E+00	9.40E-03	38.22838	1	45.87405
		27 1.00E+06	7.65E-06	7.65E+00	9.70E-03	38.22838	1	45.87405
		28 1.00E+06	7.65E-06	7.65E+00	1.00E-02	38.22838	1	45.87405
\downarrow		29 1.00E+06	7.65E-06	7.65E+00	1.04E-02	38.22838	1	45.87405

Nonlinear Seismic SMR SSI Analysis Steps Using Option NON Advanced:

- The Section_Cuts_for_BBC module This module performs automatic wall section geometry identification and the section-cuts for the selected RC wall sections.
- The BBC_JEAC_ACI_Fiber2D module This module computes the shear and bending backbone curve (BBC) for all the RC wall sections based on the either US standard or Japan standard recommendations for walls with planar section shapes (as I, C, T, or rectangular shapes), or based a 2D fiber model for walls with non-planar section shapes (as circular or rombic closed-section shapes with double symmetry).
- **The Create_Flange_Materials module** This creates and assigns new flange materials for each nonlinear wall that are included in a new structure model .pre file named ModelName_NEW.pre file (appends the "_NEW" strings to the initial .pre file name used for elastic analysis).
- **COMB_Shear_Bend module** This module combines the shear and bending interactive effects in all nonlinear RC walls at each nonlinear SSI iteration.

SMR ATF Below Surface – Linear vs. Nonlinear Soil Interface

-30ft Depth

Linear/Nonlinear Tangential Springs Linear/Nonlinear Walls

-30ft Depth

SMR ISRS Below Surface – Linear vs. Nonlinear Interface for 0.60g

Linear/Nonlinear Tangential Springs Linear/Nonlinear Walls ACI 318

-30ft Depth

44.5ft Above Ground

Low-Rise SMR Super Structure Frequency is Shifted to Lower Frequencies due to Nonlinear Wall & Interface Stiffness Reduction

Embedded SMR Linear/Nonlinear SSI Analysis Using FVROM-INT (20 SOIL key frequencies and 200 SSI frequencies) – new test

Using	4 parallel	runs on 12	8 GB RAM	workstatio	ns	
	Runnin	g Time	Node (Counts		
	Total (b)	Per Freq	Int.	Cond.	# of Freq.	
	Total (n)	(h)	Nodes	Nodes		
Condensation	2.79	0.11	7491	3081	20	
Interpolation			-	3081	200	
SSI Solution	2.77	0.01	-	3081	200	
	5.6	hours	Shood		- 2 50	
			Speed			
	Running Time		Node (Counts		
	Total (b)	Per Freq	Int.	Cond.	# of Freq.	
	Total (II)	(h)	Nodes	Nodes		
Direct SSI	19	0.097222	7491	-	200	
	19.4	hours				
	Speed ratio =		3.497354			

1 minute/freq per one nonlinear walls-nonlinear interface iteration.3 iterations are less than 10% difference in elements, 4-5 ideal

End of Part 4 Presentation Thank You!