Overview of ACS SASSI NQA V4.3 Application to Seismic SSI Analysis of Safety-Related NPP Buildings

Ghiocel Predictive Technologies Inc.

Dr. Dan M. Ghiocel

Member of ASCE 4 & 43 Standards

Email: <u>dan.ghiocel@ghiocel-tech.com</u> Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com

Part 3: ACS SASSI NQA V4.3 Software Description and Use

GP Technologies, Inc., Rochester, New York

October 2021

Part 3: Presentation Content:

- 1. Main Software Toolboxes and FE Modeling Basics
- 2. Main Software Modular Configuration
- 3. User Interface (UI) Input Dialog for Selecting Analysis Options for SSI Modules
- 4. Description of SSI Response Text Files and Frames (for Animations)
- 5. Main UI Menus for Model Inputs, Performing SSI Analysis and Plotting Results
- 6. UI General Commands
- 7. UI Commands for Generating and Checking FE Models
- 8. Batch Run Mode Commands for SSI Modules and Auxiliary Programs
- 9. Post-Processing Using UI Plotting Commands and Binary Databases
- 10. Automatic Post-Processing Using Multilevel UI Command Macros
- 11. Section-Cuts Capabilities for Shell and Solid Elements
- 12. UI Parametric Language Commands for Building SSI FE Models
- 13. Brief Review of Demo Contents
- 14. Verification and Validation

1. Main Software Toolboxes and FE Modeling Basics

ACS SASSI NQA V4.3 Toolboxes

Present/Options A-AA, NON and PRO and UPLIFT Future/Options HAZ and FRAG

2021 ACS SASSI V4 Software Toolboxes

1) **Main Software.** Include advance pre-post processing, nonlinear soil modeling, motion incoherency, others. Plus, includes seismic motion simulation and site response capabilities.

2) **Option A-AA.** Integration with ANSYS. The ANSYS structure FE models can be used directly for the 1st step of the overall SSI analysis (Option AA, AA-R), and/or in the 2nd step for the detailed stress analysis using the SSI responses as input BCs (Option A)

3) **Option NON.** Nonlinear structure, applicable to concrete structures and base-isolation using iterative scheme (ASCE 4-16, ACI-318, and JEAC 4601-2015).

4) **Option PRO.** Probabilistic SRA and SSI analyses (ASCE 4-16 Sections 2 and 5.5, and RG 1.208 E)

5) Option RVT-SIM. No input time histories are required.

ACS SASSI Main Software Modeling for Linearized SSI Analysis (Optionally with Nonlinear Soil)

ACS SASSI V4 Finite Element Library

The FE library allows the use of the following linear element types:

3D solid elements
3D beam elements
3D plate / thin shell elements
3D plate / thick shell elements
2D plane strain elements
3D spring elements
3D stiffness/mass generalized elements
3D highly viscous damper elements

type SOLID
type BEAMS
type SHELL
type TSHELL
type PLANE
type SPRING
type GENERAL (SE)
type HVD

The excavated soil is modeled using the following element types:

SOLID for 3D FEM PLANE for 2D FEM

Element Node Degrees of Freedom (Dofs)

Element	Node DOFs					
Туре	X	Y	Ζ	ΧХ	YY	ZZ
SOLID	•	•	•			
BEAM	•	•	•	•	•	•
SHELL/						
TSHELL		•	•	•	•	•
PLANE	•		•			
SPRING	•	•	•	•	•	•
HVD	•	•	•			
GENERAL	•	•	•	•	•	•

Element Group Names

Group Type (number)	Group Type (string)	Number of Nodes	Description
1	SOLID	8, or 7, or 6, or 5	3D solid element
2	BEAMS	3	3D beam elements
3	SHELL	4 or 3	3D plate/shell elements
5	TSHELL	4 or 3	3D plate/shell elements
4	PLANE	4 or 3	2D plane strain solid elements
6	HVD	3	3D High ∀iscosity Damper
7	SPRING	2	3D spring elements (translation or rotation)
9	GENERAL	3 (local axes) or 2 (global axes)	3D stiffness/mass generalized element

New 3D HVD Elements Simulate BCS Isolators

3-Node HVD Element is Based on 4-Parameter Maxwell Model (K1, B1, K2, B2)

Complex Linearized Hysteretic and Viscous Models

Damping (Imaginary Part)

Hysteretic Model (Frequency-Independent); Soil, Structure & LRB, FPB

$$\tan \delta = \frac{\operatorname{Im} \operatorname{ag}(D^*)}{\operatorname{Re} \operatorname{al}(D^*)} = \frac{1}{2\pi} \frac{\Delta W}{W}$$

$$\frac{\text{Viscous Model (Frequency-Dependent); HVD}}{\tan \delta = \frac{\text{Imag}(D^*)}{\text{Real}(D^*)} = \frac{c(\omega)\omega}{\text{Real}(D^*)}$$
(Not mentioned in ASCE 4-1

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

6)

2. Main Software Modular Configuration

ACS SASSI Main Software SSI Modules

- 1. EQUAKE Generates Spectrum Compatible Control Motion
- 2. SOIL Compute Equivalent Soil Properties and Free-Field Motions
- 3. SITE Compute Site Layering Behavior Under Different Wave Types
- 4. POINT Compute Soil Layering Flexibilities Under Point Loads
- 5. FORCE Define Nodal Loads (Forces and Moments)
- 6. HOUSE Defines the Structure and Near-Field Soil and Incoherence
- 7. ANALYS Compute Impedances & Solves SSI Problem (ATF solution)
- 8. MOTION Computes Accelerations, RS in Structure/Near-Soil
- 9. RELDISP Computes Relative Displacements
- 10. STRESS Computes Stresses/Strains in Structure and Near-Soil

11. COMBIN – Combine ANALYS Solutions with Different Frequencies 13

ACS SASSI V4.3.2 with Options Includes 38 SSI Modules (Plus GUI Shell, and 6 DOS Auxiliary Programs)

MAIN Software: 1) EQUAKE, 2) SOIL, 3) SITE, 4) POINT, 5) FORCE, 6) HOUSE, 7) ANALYS, 8) MOTION, 9) RELDISP, 10) STRESS, 11) COMBIN, 12) CDNS_MTX_INTERP only for FVROM-INT approach

Option A-AA: 1) LOADGEN,2) SSI2ANSYS, 3) PRE_SE, 4) ans_frs2file8 (plus ANSYS macros)

Option UPLIFT: 1) UPLIFT_3DFEM, 2) UPLIFT_JEAC_4601_2015, 3) GLOBAL_IMP

Option NON: 1) NONLINEAR, 2) Section_Cuts_for_BBC, 3) BBC_JEAC_4601_ACI_318, 4) Create_Flange_Materials,

5) COMB_Shear_Bend

Option RVT-SIM: 1) RVT

Option PRO: 1)ProEQUAKE, 2)ProSOIL, 3)ProSITE, 4)ProHOUSE, 5)ProMOTION, 6)ProSTRESS, 7)ProNON, 8)ProSRSS and 10)ProRESPONSE, plus auxiliary modules 11)SITEPro, 12)Check_SITE_Output & 13)Write_SITE_Output

15

3. User Interface (UI) Input Dialog for Selecting Analysis Options for SSI Modules

Simulation of Input Control Motion (EQUAKE)

Analysis Options	S Cree	an 200)	EQUAKE Spectrur	n Compatible
EQUAKE SOIL SITE	POINT HOUSE FORCE ANALYS MO	TION STRESS RE	to be independent	or Correlated
Spectrum Files				
Spectrum Number		Edit	Spectrum File - NEWMHX.RSO'	
Spectrum Input File		>>	3	Curve 1
Spectrum Output File		>>		Curve 2
Acceleration Output File		>>		
Optional Spectrum Files	la based on modifi	ad Wieper Low		
Accel. Record	External A and Abrahamsc	on algorithms	D	
Acceleration Input File				
Number of Frequencies	8393 Correlation Ro Time Corr.			
Damping Value			C Time History File - m1stac	
Time Step	0.005	$- \mid \setminus$	N (033	
Total Duration	0			lui it a
Number Of SEEDs		Uses pha	ising	
Correlated	, , ,	from re		A, ANN ANNO IAN ANN ANG ANA IM-AN-AN-
Spectra Title		record	s • Attern	
			r Malutia	THE FULL FRANCE
			1	
ncludes non-station	ary correlation between X an	d Y components		9.99
		L		

EQUAKE Module Capabilities – Firm Soil Site

EQUAKE Module Capabilities – Rock Soil Site

Spectrum Compatible Accelerograms with Nonstationary Correlation

Fourier Interpolation (FZPI) for High-Frequency

ACS SASSI V4 EQUAKE module includes the *Fourier zero-padding interpolation for acceleration histories* for computing the response spectra in the high-frequency range. *ASCE* 43-19 requirement.

Computing High-Frequency RS Using Fourier Zero-Padding Interpolation (FZPI) Example

Site Response Via SHAKE Methodology (SOIL)

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory

Training Notes

Computation of Equivalent Soil Properties

Input Acceleration Time History .85600 **SOIL Module** MAXIMUM ACCELERATION AT TIME 4.37 SEC = THE VALUES WILL BE MULTIPLIED BY A FACTOR = .350 (based on SHAKE approach) .30000 TO GIVE NEW MAXIMUM ACCELERATION MEAN SQUARE FREQUENCY = 6.87 C/SEC. **Computes Equivalent Soil** *** CONTROL MOTION LAYER *** ** MOTION OF LAYER NUMBER 1 OUTCROPPING **Properties Using** *** STRAIN COMPATIBLE SOIL PROPERTIES *** **Seed-Idriss Equivalent** 8 MAXIMUM NUMBER OF ITERATIONS = STRAIN FACTOR IN TIME DOMAIN . 60 **Linear Model** = EARTHQUAKE C:\AC5_C\NEWMHX.ACC Initial Soil Layering Properties SOIL PROFILE DESCRIPTION *** *** NEW SOIL PROFILE NO. 1 IDENTIFICATION 5 BEDROCK 40.00 NUMBER OF LAYERS DEPTH TO DAMPING NO. TYPE THICKNESS DEPTH Tot. PRESS. MODULUS UNIT WT. SHEAR VEL (ft) (ft) (ksf) (ksf) (kcf) (fps) 1000.0 1 1 10.00 5.00 .65 4037. 050 .130 2 1 15.00 1.64 037. .050 10.00 .130 1000.0 3 1 25.00 2.31 4037. .050 .130 10.00 1000.0 4 2.99 4037. .050 .130 1 10.00 35.00 1000.0 .050 5 4037 .130 1000.0 BASE .16 FOR AVERAGE SHEAR VELOCITY 1000. PERIOD = Final Soil Layering Properties ITERATION NUMBER - 8 VALUES IN TIME DOMAI NO TYPE DEPTH G/GO UNIFRM. DAMPING SHEAR MODULUS ----> <------> <----(FT) STRAIN NEW USED ERROR NEW USED ERROR RATIO 5.0 .00296 3877.2 3877.2 1 1 014 .014 .0 .0 .960 2 1 15.0.00909 027 .027 0.0 3466.9 3466.9 .0 .859 3 1 25.0 .01629 038 .038 0.0 3055.3 3055.3 0.0 .757 4 1 35.0 .676 .02485 047 .047 0.0 2729.12729.2 0.0

PERIOD = .18 FOR AVERAGE SHEAR VELOCITY = 900. 2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training

SOIL Module Including DEEPSOIL Option

EQUAKE SOIL SITE POINT	HOUSE	FORCE ANALYS	MOTION	STRESS	RELDISP	NONLINEAR	AFWRITE
nput Motion		Soil Profile			Stresse	s Strains	
Number of Fourier Components	0	Layer Number	1	_	Con	npute Stresses	
Time Step of Input Motion	0	Property Number	0		Save	e Stress Time H	istory
Number of Values	0	Dynamic Soil Prop	perty			npute Strains e Strain Time H	iston
Multiplication Factor	0				Genet		- For the second s
Max Value for Time History	0	Accelerations		_	Spectra	Amplification	Factor
Gravity Accel. (ft/s^2 or m/s^s)	32.2					e Spectral Amp	lification Factor
(used for free-fixed analysis)		No Computati	on			cropping of Eir	st laver
		O Compute Max	kimum		Second	d Laver Number	
		Compute Max	imum Tii	ne History	Freque	ncy Step	0
inear Site Respo	nse	Outcropping			Title		
a domain uaina		Response Spectru	m		Fourier	Spectrum	
le domain using		Save Response	Spectrur	n	Con	npute Fourier S	pectrum
e theory as DEEF	PSOII	Outcropping			Save	e to File	
		Multiplier for Acceleration of G	ravity 0		Out	cropping	
Number of Iterations 0		Damping Ratios			Nr. of S	Smoothings	0
Equiv. Uniform / Max Strain					Nr. of V	/alues to be Sav	ved 0
vonlinear Soil							
Nonlinear Time Domain				Curve fit H	Ivperbolic	Parameters	
Subincrements per Timesten	50			Beta	0		
Submerements per fintestep		Damping Type (1.2.2)	0	Sevenent	0		
Displacement Convergence Error		Mass Matrix Mult		Poforonco Str	rain 0		
Displacement Convergence Error	10	viass iviatrix iviurt.	0	Nelefence Su		_	
Displacement Convergence Error Force Convergence Error		Dates & America & America		P	0		

2021 Copyright of 2019 Copyright of Chilocel Biediktive AT erisher Ogies, Nec., 5All Right Reserved oductory Training 26 es

SOIL-NON DEEPSOIL vs. SOIL SHAKE Methods

Equivalent-Linear vs. Nonlinear Site

Selection of Seismic Wave Environment (SITE)

EQUAKE SOIL SITE POINT HOUS	FORCE ANALYS MOTION STRESS RELDISP NONLINEAR AFWRITE	
Operation Mode	Mode 2	
 ○ Linear Soil ○ Non-Linear Soil ○ Mode 1 ○ Mode 2 	 R-,SV-,and P-Waves SH- and L-Waves 	
Mode 1	R-Wave SV-Wave () SASSI Soil Layer View <5>	
Gravity Accel. (ft/s^2 or m/s^s) (used for free-fixed analysis)32.2Frequency Step0Time Step Control Motion0.005Nr. of Fourier Component4096Frequency Set Number1Number of Generated Layer20	Image: No Wave Field Layer Thickness Unit Weight P-Wave S-Wave S-Wave P-Wave S-Wave P-Wave S-Wave S-Wave P-Wav	Vave 1ping atio 05 05 05 05 05
Halfspace Layer 2	Incident Angle 0 Frequency 1 1 Frequency 2 4000	
Top Layers	Control Point Layer 1 Direction © X OY OZ Compute Site Response Assuming A Selected Seismic Environment Including SV, P and R- or SH and L- wave Combination	

Input for Computing Soil Flexibility Matrix (POINT)

Analysis Options	
EQUAKE SOIL SITE POINT HOUSE FORCE ANAL Operation Mode Operation Operation Operation Operation Image: Solution Image: Solution Image: Solution Image: Solution Image: Solution	YS MOTION STRESS RELDISP AFWRITE
Point Load Central Zone Radius	POINT Module Compute Soil Layering Flexibility Matrix
	Radius for Transmitting Boundary for point load at soil layer interface. It depends on interaction node mesh
	OK Cancel Help

Inputs for Coherent and Incoherent SSI (HOUSE)

HOUSE Module for Incoherent SSI

	EQUAKE SOIL SITE POINT HO	DUSE FORCE ANALYS M		RESS RELDISP NO	ONLINEAR AFWRITE
	Operation Mode	Soil Motion		Multiple Excitation	
Up to 50 stor	chastic wave field) Coherent	erent	Use Multiple Excita	ation r 1
simulations i	n a single SSI analysis	herence Parameter X Dir	0	First Foundation Nod	e 0
run (up to 50	FILE77)	herence Parameter 7 Dir	0	Last Foundation Node	e 0
	O Flexible Volume(FV)	Alpha Directionality Factor	0.50	X Coord, of Control P V Coord, of Control P	oint 0
	Fast Flexible Volume(FFV)	Number of Embedded Layers	; 8	Z Coord. of Control P	oint 0
	Flexible Interface(FI)	Time Step of Seismic Motion	0.005	6 . IA 10	
	Acceleration of Gravity 32.2	Nr. of Fourier Components	16384	- Spectral Amplification	
	Ground Elevation 0	Frequency Set Number			
	Ontimize Model	Print Mode Contributions	s		
	Wave Passage				<u>~</u>
	Use Wave Passage	Angle Line D with X Axis	0	Non-Uniform Mot	ion
	Apparent Velocity for Line D 1.e+8	Unlagged Coherency Model	5	Non-Uniform Soil	
	Motion Incoherency Simulation		Seed V	/ariables	
	Deterministic (Median) Incoherency I Stochastically Simulated Incoherency	nput	Horizo	ontal Seed Number 7	5902
	ANSVS Model InputANSVS Model		Rando	al Seed Number 4	80
Stochastic s	imulation approach is recor	nmended Up to 50	Numb	er of Simulations	
simulations in different	single SSI run. Use different simulations. Random phase	nt SEED numbers fo e is always 180.	or		
				Ok	Cancel

HOUSE Incoherent SSI Capabilities

There are several plane-wave incoherency models (with wave passage effects):

- 1) 1986 Luco-Wong model (theoretical, unvalidated, geom anisotropic)
- 2) 1993 Abrahamson model for all sites and surface foundations
- 3) 2005 Abrahamson model for all sites and surface foundations
- 4) 2006 Abrahamson model for all sites and embedded foundations
- 5) 2007 Abrahamson model for hard-rock sites and all foundations (NRC)
- 6) 2007 Abrahamson model for soil sites and surface foundations
- 7) User-Defined Plane-Wave Coherency Functions for X, Y and Z.

REMARKS:

- 1) Also includes *directional* Abrahamson or user-defined coherency models.
- For general, more complex situations, can include *nonuniform motion in horizontal plane* by both amplitude and phase changes at different interaction nodes;
- 3) Analyst can include *different coherent functions at different depth levels* in the freefield using HOUSE create FILE77 for each node layers of interaction nodes, and append all FILE77 files together for all interaction nodes. Need expert support. *NOTE: To include automatic checking for the incoherent mode shapes*

Stochastic Simulation Incoherent SSI Approach

2020 Copyrightight Ghfodeli Ocedii tive i Teichen Głogie s, Ingie All Rights Riesergy Ab 5-Day ACS (SASSIde troductory: Craibing Notes)

Radial vs. Directional Motion Coherency Models

Deterministic Incoherent SSI Approaches (NOT RECOMMENDED)

ACS SASSI uses simplified superposition rules for combining incoherency modes or their random SSI modal effects:

i) Linear superposition of motion incoherency modes scaled with their standard deviation to simulate the free-field motion (AS in EPRI studies) – *single* SSI analysis

ii) Quadratic superposition of incoherency modal amplitude responses, applicable for the computed ATF or RS modal responses (SRSS in EPRI studies) – *multiple* SSI analysis

Five deterministic incoherent SSI approaches could be used:

- 1) Linear/algebraic summation (AS) w/ phase adjustment (EPRI TR#1015111)
- 2) Linear/algebraic summation (AS) w/o phase adjustment *
- 3) SRSS of ATF Amplitude w/ zero-phase (EPRI TR#1015111)
- 4) SRSS of ATF Amplitude w/ non-zero phase *
- 5) SRSS of RS (used in 1997 EPRI TR#102631, but not validated in 2007 EPRI TR#1015111) *
- * Note: Not considered in the 2006-2007 EPRI studies (EPRI TR# 1015111)
Nonuniform Input Motion in Horizontal Plane

Multiple Soil Column Response Analyses

Non-Uniform Excitation and Soil Stiffness

ACS SASSI Version 4 has the capability to consider deterministic spatial variation patterns for differential input motions in the horizontal plane (HOUSE input).

These deterministic spatial variation effects can be combined with the effects of motion incoherency and wave passage to create more realistic seismic inputs for SSI analysis of NPP structures, especially for those that have large foundation sizes.

Nonuniform Input Motion in Horizontal Plane

Near-Field Soil Input for Nonlinear SSI

By clicking the "Nonlinear SSI" Input Data in HOUSE a text file is opened for editing.

This file has extension .pin and needs to input in a free-format:

1st line: Number of nonlinear soil element groups, effective strain factor, number of soil material curves defined in SOIL (soil constitutive model);

2nd line: Number of the nonlinear soil element group, number of materials (could be equal with the number of layers or not) in the group and number of solid elements in the group

3rd line and after define a loop over the number of soil materials, with each line including: The initial shear modulus reduction factor (1.00 indicates same shear modulus as in free-field), the initial damping ratio factor (1.00 indicates the same damping as in free-field) and the soil material curve order number.

The block of lines after 1st line, needs to be input for all nonlinear soil element groups.

Near-Field Soil Input for Nonlinear SSI (cont.)

Example with a single group of nonlinear soil elements, an effective strain factor of 0.60 and 2 soil material curves.

The order number of the nonlinear soil group is 2, the number of soil materials in the group is 5, and total number of elements in the group is 180.

For each the 5 soil material lines, we input 1.0 for the scale factor of G, 1.0 for the scale factor of D, and 1 for material curve (curve number are defined in SOIL).

C:\ACSV21\Problem14\Problem14.pin	FF	NF
1, 0.6, 2 2, 5, 180 1.0, 1.0, 1		
1.0, 1.0, 1 1.0, 1.0, 1 1.0, 1.0, 1		
1.0, 1.0, 1 New option added for 3D models		

2D Soil Nonlinear Soil for Site or SSI Response

Use of nonlinear 2D PLANE elements similar to the use of nonlinear 3D SOLID elements for 3D SSI analysis

COMB_XYZ_STRAIN Module for 2D SSI Models

Constitutive Model Criteria based on: 1) Maximum Component Shear Strain (X) 2) Maximum Shear Plane Criterion

Auxiliary Program COMB_XYZ_STRAIN for Combining SSI Soil Shear Strains in 3D Space

ANALYS Module Coherent & Incoherent SSI

Operation Mode Frequency Numbers Image: Solution Data Check Image: Solution Control Motion Foundation Reference Point Image: Solution Control Motion Foundation Reference Point X-Coordinate of Control Point 0 Y-Coordinate Transformation Angle Control Point New Structure Coherent Incoherent New Dynamic Loading Free-Field Load Randomization Only Decoupled (Diagonal) Impedances SSI solution Step Condensation Pree-Field Motion Randomization Only Decoupled (Diagonal) Impedance SSI with Condensation Delete Restart Files Print Amplitude Only FFL is EPRI Validated, Li=XC*(Uc*RF) - surface FFL is EPRI Validated, Li=(Xc*Uc)	EQUAKE SOIL SITE POINT	HOUSE FORCE	ANALYS	MOTION	STRESS	RELDISP	NONLINEAR	AFWRITE		
Image: Seismic Control Motion Foundation Reference Point Image: Seismic Control Point Image: Seismic Foundation Node Image: Seismic Control Point Image: Seismic Foundation Node Image: Seismic Foundation Vibration Coordinate of Control Point Image: Seismic Foundation Node Image: Seismic Foundation Coordinate of Control Point Image: Seismic Foundation Node Image: Seismic Foundation Node Image: Seismic Foundation Coordinate of Control Point Image: Seismic Foundation Node Image: Seismic Foundation Node Image: Seismic Foundation Node New Structure Coordinate of Control Point Image: Seismic Foundation Image: Seismic Foundation Node Image: Seismic Foundation Node New Structure Coordinate Transformation Angle Image: Seismic Foundation Node Image: Seismic Foundation Node Image: Seismic Foundation Node Soil Impedance Colu Coherent Incoherent Image: Seismic Foundation Node Image: Seismic Foundation Node Image: Seismic Foundation Node Soil Impedance Conly Free-Field L	Operation Mode Solution Data Check Type of Analysis	Frequency Numbers Take Frequency Numbers Frequency Set Numb	umbers fro per 1	m File1 / Fil	e9	ultiple Excita] Use Multipl put Motion I	ation le Excitation Number 1			
 New Structure New Seismic Environment New Dynamic Loading Soil Impedance Only SSI Solution Step Condense Impedance SSI with Condensation Delete Restart Files Print Amplitude Only Save Restart Files Up to 50 stochastic SSI response simulations in a single SSI analysis run (up to 150 FILE8s) 	 Seismic Foundation Vibration Mode Of Analysis Initiation 	Control Motion Four X-Coordinate of Cor Y-Coordinate of Cor Z-Coordinate of Cor Coordinate Transfor	ndation Re ntrol Point ntrol Point ntrol Point mation An	ference Poir 0 -10 gle 0	nt Fin La X Y Z	rst Foundationst Foundation (Coord. of Co Coord. of Co Coord. of Co	on Node 1 on Node 69 ontrol Point 0 ontrol Point 0 ontrol Point 0			
Imultaneous Cases Imultaneous Cases Print Amplitude Only FFM is an alternate option Li=Xc*(Uc*RF) - surface FFL is <i>EPRI Validated</i> , Li=(Xc*Uc)*RF - embedded Imultaneous Cases Imultaneous	 New Structure New Seismic Environment New Dynamic Loading Soil Impedance Only SSI Solution Step Condense Impedance SSI with Condensation 	 Coherent Wave Passage Eff Free-Field Load Free-Field Motion 		 Global Impedance Calculations No Impedance Calculations Only Decoupled (Diagonal) Impedances Full Rigid Body Impedance Matrix 6X6 						
Up to 50 stochastic SSI response simulations in a single SSI analysis run (up to 150 FILE8s)	Simultaneous Cases 0 ✓ Save Restart Files	Delete Restart Files	s nly		r F L	FM is _i=Xc*	an alter (Uc*RF)	nate op - surfa	otion ace	
	Up to 50 sto response sin single SSI a (up to 150 F	ochastic SSI mulations in nalysis run FILE8s)	l na		F	FL is _i=(Xc'	EPRI Va *Uc)*RF	alidated - embe	edded	

Simultaneous Cases Option

To save significant SSI runtime for batch runs, the ANALYSFS can solve simultaneously all three X, Y and Z input directions for seismic SSI analysis (coherent, seismic option), or to up to 500 load cases of external forcing function (vibration option).

For seismic analysis the user should type 1 to get all three X,Y and Z direction results in a single run. The ANALYS run results will be saved in three FILE8 files computed for X,Y and Z inputs named FILE8X, FILE8Y and FILE8Z. To use this option for seismic analysis, the SITE module should be run before ANALYS run for X, Y and Z direction inputs and generate the FILE1X, FILE1Y and FILE1Z files.

The user should define for seismic input the SV waves for the X-direction by selecting x' direction and 0 angle in the .sit SITE input file, the SH waves for the Y-direction by selecting y' direction and 0 degree angle and the P waves in the Z-direction by selecting z direction and 0 angle.The coordinate transformation angle in the .anl ANALYS input file should be 0. It should be noted that if the "*Simultaneous Cases*" is selected for *incoherent SSI analysis*, then, up 50 simulations can be solved in a single run. The FILE77 produced by HOUSE should be also replicated in the FILE77001, FILE77002, up to FILE77050 before the ANALYS module is run.

For external force/vibration analysis the user should type a three-digit number to input multiple load cases, up to 500 load external force cases. To use multiple external force cases up to 500 load cases in a single ANALYS run, the FORCE module should be run before ANALYS for all considered load cases and generate the FILE9001, FILE9002, FILE9003...up to FILE500. For the 50 load cases, ANALYSFS produces the 150 FILE8 files named FILE8001, FILE8002, FILE8003,...up to FILE8150 depending on the number of load cases.

Restart SSI Analyses Using ANALYS Options

EQUAKE SOIL SITE POINT	HOUSE FORCE	ANALYS	MOTION	ST					
Operation Mode	Frequency Numbers	;							
Solution O Data Check	Take Frequency Numbers from File1 / File								
0.000	Frequency Set Num	ber 1							
Type of Analysis	Control Motion Fou	ndation Re	ference Poir	nt					
Seismic	X-Coordinate of Co	ntrol Point	0						
\bigcirc Foundation Vibration	Y-Coordinate of Co	ntrol Point	0	1					
Mode Of Analysis	7-Coordinate of Co	ntrol Point	0						
Initiation	Coordinate Transfor	mation An							
O New Structure	coordinate mansion	matoria	gie						
New Seismic Environment	Coherent	OIncoh	erent						
New Dynamic Loading									
Soil Impedance Only									
SSI Solution Step	Free-Field Load	l Randomiz	ation						
	C Free-Field Moti	on Random	nization						
		on Randon	12011011						
O SSI WITH CONDENSATION									
Simultaneous Cases 0	Delete Restart File	es							
Save Restart Files	Print Amplitude O	nly							
	EQUAKE SOIL SITE POINT Operation Mode Solution Data Check Type of Analysis Seismic Foundation Vibration Mode Of Analysis Initiation New Structure New Seismic Environment New Dynamic Loading Soil Impedance Only SSI Solution Step Condense Impedance SSI with Condensation Simultaneous Cases 0 Save Restart Files	EQUAKESOILSITEPOINTHOUSEFORCEOperation ModeFrequency Numbers● SolutionData CheckFrequency Numbers● SolutionData CheckFrequency Set NumType of AnalysisControl Motion Fou X-Coordinate of Co Y-Coordinate of Co Y-Coordinate of Co Z-Coordinate of Co Coordinate of CoMode Of AnalysisControl Motion Fou X-Coordinate of Co Z-Coordinate of Co Z-Coordinate of Co Coordinate of Co Coordinate Transfor● InitiationCoherent● New Seismic Environment● Coherent● New Dynamic Loading ● Soil Impedance Only ● SSI Solution Step● Free-Field Load ● Free-Field Motio● Solutianeous Cases0Delete Restart File● Save Restart Files♥ Print Amplitude O	EQUAKE SOIL SITE POINT HOUSE FORCE ANALYS Operation Mode Frequency Numbers Image: Solution in the second	EQUAKE SOIL SITE POINT HOUSE FORCE ANALYS MOTION Operation Mode Frequency Numbers Take Frequency Numbers from File1 / File Take Frequency Numbers from File1 / File Image: Solution Data Check Trequency Set Number 1 Type of Analysis Control Motion Foundation Reference Point 0 Seismic Control Motion Foundation Reference Point 0 Foundation Vibration Y-Coordinate of Control Point 0 Mode Of Analysis Z-Coordinate of Control Point 0 Initiation New Structure Ocherent Incoherent New Seismic Environment Ocherent Incoherent Incoherent New Dynamic Loading Free-Field Load Randomization Free-Field Motion Randomization Free-Field Motion Randomization SSI Solution Step Delete Restart Files Print Amplitude Only					

Eight running

modes are

available in

ANALYS

ANALYS Restart Options

The restart analyses imply that large files were saved. The following changes of problem parameters need different levels for the restart analyses:

1. New Control Motion (No ANALYS restart)

Suppose results are required for a different time history (or response spectrum) of the control motion. Then, as long as the nature of seismic environment, i.e., the type of wave field, is not changed, only the module MOTION has to be re-executed

2. New Structure or Near-Field Soil (Mode 2)

If changes are made in the superstructure or near field soil, the HOUSE, ANALYS, STRESS or MOTION and RELDISP modules have to be reexecuted.

The restart files for the fast-solver are the COOXxxx and COOTKxxx, DOFSMAP, FILE90 and FILE91 files.'

3. New Seismic Environment (Mode 3)

Suppose that structure was originally analyzed for the effects of vertically propagated body waves and that results are required for the case of incident Rayleigh waves causing the same motion at the control point as in the free field. In this case only a part of the SITE module and ANALYS module have to be re-executed.

- 4. New Dynamic Loading (Mode 4) Similar with Mode 3 for new external force cases.
- 5. Computes the COOXyyy for the selected SSI frequencies

Computes the COOXxxx for the selected SSI frequencies.

6. Compute SSI Solution (Mode 6)

Computes SSI solution only. The SSI system matrices COOTKxxx and load vectors LOADXYZxxx should be available in working folder

7. Condense Excavation Impedance Matrix for Embedded Models (Mode 7)

Condense Impedance (Mode 7, Limited Analysis Run): This option is for computing the frequency-dependent condensed excavated soil impedance and condensed seismic load vector. Currently this ANALYS option should be used in conjunction with the Option AA-R only.

This ANALYS running option will create a set of *IMP_EXCV_Fxxx* and *IMP_EXCVxxx* files for each SSI frequency, as well as a *DOFSMAP_IMP_EXCV* file. These files will be used to create super-elements in ANSYS for performing the SSI harmonic analysis via Option AA-R.

Demos 15 and 16 provides the details on how to use the reduced soil impedance and reduced seismic load vector for seismic SSI solution in ANSYS via Option AA-R, and ACS SASSI, respectively.

8. SSI with Condensation (Mode 8)

Restart for SSI Solution using condensed soil impedance matrix.

The generalized procedure for the **FVROM-INT** approach is as follows:

- 1) Identify the key or condensation frequencies using SOIL module
- 2) Compute the condensed the excavation impedance matrix and seismic load vectors for the *key frequencies* using ANALYS module
- 3) Interpolate these quantities for all SSI frequencies
- 4) Compute SSI system solution for all SSI frequencies for the reduced excavation impedance matrix and load vectors using ANALYSI module

Demo 16 shows in detail the use of the FVROM-INT approach

Computing Accelerations, ATF and RS (MOTION)

ase Spectrum Data equency lumber of Freq. Steps ng Ratios .05 ration Time History Da courier Components tep of Control Motion lication Factor	0.1 100 100 100 100 100 0.005 0 0.1 0	MOTI compu functions files, m files, a	ON Module Ites transfer s, TFU and TF Iotions, ACC Ind response	
equency equency lumber of Freq. Steps ng Ratios .05 ration Time History Da Fourier Components tep of Control Motion lication Factor	0.1 100 100 100 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0	MOTIO comput functions files, m files, a	ON Module Ites transfer s, TFU and TF Iotions, ACC Ind response	
equency lumber of Freq. Steps ng Ratios .05 ration Time History Da courier Components tep of Control Motion lication Factor have for Time History econd	100 100 ata 4096 0.005 0 0.1 0	MOTIO computions functions files, m files, a	ON Module Ites transfer s, TFU and TF Iotions, ACC Ind response	
lumber of Freq. Steps ng Ratios .05 ration Time History Da Fourier Components tep of Control Motion lication Factor have for Time History econd	100 ata 4096 0.005 0 0.1 0	MOTIO compu functions files, m files, a	ON Module Ites transfer s, TFU and TF Iotions, ACC nd response	
ng Ratios .05 ration Time History Da courier Components tep of Control Motion lication Factor hav for Time History econd	ata 4096 0.005 0 0.1 0	MOTIO compu functions files, m files, a	ON Module Ites transfer s, TFU and TF Iotions, ACC Ind response	
05 ration Time History Da ourier Components tep of Control Motion lication Factor has for Time History score	ata 4096 0.005 0 0.1 0	MOTIO comput functions files, m files, a	ON Module Ites transfer s, TFU and TF Iotions, ACC nd response	
ration Time History Da Fourier Components tep of Control Motion lication Factor have for Time History econd	4096 0.005 0 0.1 0	MOTIO compu- functions files, m files, a	ON Module Ites transfer s, TFU and TF Iotions, ACC nd response	
Courier Components tep of Control Motion lication Factor the for Time History econd	4096 0.005 0 0.1 0	compu functions files, m files, a	Ites transfer s, TFU and TF lotions, ACC nd response	
tep of Control Motion lication Factor the for Time History econd	0.005 0 0.1 0	functions files, m files, a	s, TFU and TF lotions, ACC nd response	
ication Factor Not for Time History econd	0 0.1 0	files, m files, a	notions, ACC nd response	
interfor Time History econd	0.1	files, a	nd response	
econd	0			
ecord			RS at selecte	
	0	poolid,		
RG160X		noue	s, ko iiles.	
C:\ACSv300\DEMO_PR				
Contains Pairs Time St	tep - Accel.			
		1 10		
Includes 7 TF interpolation algorithms and explicit input				
arameters for e	error smoo	othing & ph	ase adjustment.	
Restart for TF				
Restart for ACC	Saving F	Results, TF	U. ACC and RS fo	
Restart for RS	nost-nr	rocessing F	Restart is used for	
	aonoratin	a framas fo	r contour deferm	
	yeneralin	y lialles lu		
	Sna	ape plots al	nd animations	
	Restart for TF	Restart for TF Restart for TF Restart for ACC Restart for RS post-pr generatin sha	Restart for TF Restart for ACC Restart for RS Restart for RS	

SSI Response Transfer Function Interpolation

Transfer Function Interpolation Technique

- The frequency interpolation technique used to interpolate the response for frequencies in between the calculated and to obtain the response for all FFT frequencies is based on the frequency response function of a two-degree-of-freedom system.
- The total response of a two-degree-of-freedom system subjected to harmonic base excitation for each degree-of-freedom has the following general from

$$U^{i}(\omega) = \frac{C_{1}^{i}\omega^{4} + C_{2}^{i}\omega^{2} + C_{3}^{i}}{\omega^{4} + C_{4}^{i}\omega^{2} + C_{5}^{i}}$$

To compute the complex coefficients a five equation system needs to be solved

$$\begin{bmatrix} \omega_1^4 & \omega_1^2 & 1 & -\omega_1^2 U_1 & U_1 \\ \omega_2^4 & \omega_2^2 & 1 & -\omega_2^2 U_2 & U_2 \\ \omega_3^4 & \omega_3^2 & 1 & -\omega_3^2 U_3 & U_3 \\ \omega_4^4 & \omega_4^2 & 1 & -\omega_4^2 U_4 & U_4 \\ \omega_5^4 & \omega_5^2 & 1 & -\omega_5^2 U_5 & U_5 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \end{bmatrix} = \begin{bmatrix} \omega_1^4 U_1 \\ \omega_2^4 U_2 \\ \omega_3^4 U_3 \\ \omega_4^4 U_4 \\ \omega_5^4 U_5 \end{bmatrix}$$

Note:

Based on our experience that the two-degree-of-freedom-system interpolation technique may sometimes introduce some spurious spectral peaks and valleys. Thus, it is recommended when significant spectral peaks are identified between the frequency solution points to add new frequency points in that range. 53

Comparative ATF Results w/ Less Frequencies

Criteria for Selecting Frequency Solution Points

- Depend on the number of peaks in the transfer function at the specific response location and how close these peaks are located relative to each other.
- The frequencies of analysis can be selected by recognizing that the SSI effects usually shift the frequencies to the lower frequency range and tend to flatten the sharp peaks or sometimes even eliminate the fixed-base response peaks.
- Most of the practical problems are sufficient to solve SSI solution for a limited number of frequencies; about 40-50 frequencies for stick SSI models and about 150-250 frequencies for 3D SSI models. A larger number of frequencies needed for rock sites than soil sites.
- If no information on natural frequencies of the system are is available, it is necessary to selected adequate number of frequencies with an uniform increment throughout the frequency range of interest. Then, after revising the results, more frequencies are added to reconstruct the missing spectral peaks.

²⁰²¹ Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

ATF Interpolation Error Smoothing Results for EPRI AP1000 Stick Model.

(Mean) Incoherent Interpolated ATF Using Different Interpolation Schemes

FLEXIBLE (SP10PA0, MODES=10)-- XINPUT -- ATF :

(Mean) Incoherent Interpolated ATF Using Different Interpolation Schemes

FLEXIBLE (SP10PA0, MODES=10) -- ZINPUT -- ATF

Spline Interpolation Applied to SSI Simulations

Spline Interpolation Applied to Incoherent SSI Simulation Approach (RECOMMENDED)

61

ATF Checking for FVROM Key SSI Frequencies

Computing Relative Displacements (RELDISP)

EQUAKE SOIL S	TE POINT HOUS	E FORCE ANALYS		ESS RELDISP NO	NLINEAR AFWRITE	
Reldisp Input Format	Binary					
Reference Location a	nd Direction		U	Ise MOTION T	FI	
Complex TF File Nam	ne			ext files needs	9 runs for X-X, Y-X,	, Z-X
Reference Node ID			B	linary files need	ds only 3 runs for X,	Y and Z
Output Control						
Save Rel Disp Con	nplex TF					Module
Acceleration Time Hi	story Data	Nodal Output Data			computes	transfer
Nr. of Fourier Compo	onents 0	Node Num X	Y Z XX YY	ZZ	functions	TFD files
Time Step of Control	Motion 0				and moti	one THD
Multiplication Factor	0				files for	rolativo
Max Value for Time H	listory 0				dienlace	amente
First Record	0				aispiace	
Last Record	0					
Title						
File		Add	Edit	Delete		
File Contains Pairs	s Time Step - Accel.					
Binary Output Option	Post Processing	Options				
No Binary	Save Relative	Displacement in All No	des 🔄 Restart Fo	or Frame Generation		
O THD Binary	Save Rotatio	ns for ANSYS		Saving Result	ts, THD files, for Post-	processing.
				Restart is used fo	r generating text frame	es for deformed
				sha	pe plots and animatior	IS
ocessing us	ing binary D	B		Ob	Const	62
					Cancel	63

MOTION Analysis Options

Analysis Options								×	
EQUAKE SOIL SITE	POINT HOUSE	FORCE ANALYS	MOTION	STRESS	RELDISP	NONLINE	AR AFWI	RITE	
Operation Mode Type	e of Analysis	Baseline Correcti	ion	Response	Spectrum D)ata			
Solution Solution	eismic	No Correction	i	First Frequ	uency	1			
O Data Check O Fo	oundation Vibration	O With Correction	on	Last Frequ	uency	81	92		
Output Control				Total Number of Freq. Steps 32					
Output Only Transfer F	unctions Inco	oherent SSI	Input	Damping	Ratios				
Save Complex Transfer	Functions	roolation Option	1		- tatios				
Save FILE 12 or FILE 13	0 Pha	se Adjustment	1	A	T:				
Total Duration to be Plotte	d 0 Fila	se Aujustment	1	Accelerati	ion Time Hi	story Data –	100		
	Smo	botning Parameter	ч	Nr. of Fou	Irier Compo	nents 8	192		
Nodal Output				Time Step	o of Control	Motion 0	.005		
Node List			77	Multiplica	ation Factor	1			
1-30		2 0 1 0 1 0) 22	Max Value	e for Time H	listory 0			
	Printed Plot of	Transfer Function		First Reco	rd	1			
	Save Time Histo	ory of Requested Resp	ponse	Last Reco	rd	5	000		
	Plot Acceleratio	on and Velocity R.S.	onse	Title acc	c_X_8192				
	Save Acceleration	on and Velocity R.S.		File C:/	/test/tshell/a	acc_X_8192.	асс		
	Print Maximum	Requested Response	2	File Co	ntains Pairs	Time Step	- Accel.		
e binary database ad	ded to the	options.							
each input direction	the Rinary [) R name wi	ll he						
	Madalaara				Restart for T	F			
ITY DB name will be	wodeiname				Restart for A	CC			
input finder instory fi		Save RS in All	Points for Apsys 11	0	Restart for R	S			
			TOT Allsys 11	– Fa	aster E	Binary	DB P	ost-Pro	oces
		Binary Output Op	tion	fo			TEL		
		Save Binary Da	atabase	10					0)
					OF		Cancel		

RELDISP Analysis Options (TFI Text Files)

Complex TF File Name Reference Node ID				Input I	Direction	9 i Z i	runs for co	omplete X, ` (,YX,ZX,…)	Y an
Output Control Save Rel Disp Complex TF									
Nr. of Fourier Components Time Step of Control Motion Multiplication Factor Max Value for Time History First Record Last Record Title File	0 0 0 0 0 0	Node	Save For e Mod Mod	e binary each in eIname eIname	v datak put dir e_TR_ e_TR_ e_TR_	Dase a ection X_TH Y_TH Z_TH	dded to the Bina D.bin D.bin D.bin	the option iry DB nar	s ne v
Binary Output Option Post	Processing C)ptions Displacen	ient in All I	Nodes 🗌	Restart For	r Frame Ge	neration		

RELDISP Analysis Options (TFI Binary Files)

EQUAKE SOIL	SITE	POINT	HOUSE	FORCE	ANALYS	MOTION	STRESS	RELDISP	NONLINEAR	AFWRITE		
Reldisp Input Fo	rmat											
⊖ TFI ASCII (●	TFI Bin	ary										
Reference Locat	ion and	Direction										
Complex TE File	Name					Input [Direction					
Reference Node		0				■	ο γ Ο Ζ					
Reference Node	U											
Output Control												
Save Rel Dis	o Comp	lex TF										
Acceleration Tir	ne Histo	ory Data		Nodal	Output Dat	а						
Nr. of Fourier Co	ompone	nts 0		Node	N X Y	Z XX Y	Y ZZ					
Time Step of Co	ntrol M	otion 0										
Multiplication F	actor											
First Record	ime His				Sa	ave bin	ary da	tabase	added to	o the op	otions	
Last Record		0			F	or each	input	directio	on the Bi	narv DF	8 name	will t
Title				А	dd M	odelna	me T	HD bir	ייים ביי ר			
File						oucind						
File Contains	Pairs Ti	me Step -	Accel.									
Binary Output O	ption –	Post Pro	ocessing C	ptions								
No Binary		Save	e Relative	Displacer	nent in All I	Nodes 🗌	Restart Fo	r Frame Ger	neration			
O TFD Binary		Save	e Rotation	s for ANS	YS							
THD Binary												
									Ok	Cancel		

Computing Relative Displacements (RELDISP)

			-				-	
analysis Options								×
EQUAKE SOIL SITE	POINT HOUSE	FORCE AN	IALYS MOTION	STRESS	RELDISP	NONLINEAR	AFWRITE	
Reldisp Input Format O TFI ASCII TFI Bina	ary							
Reference Location and I	Direction							
TFI Binary DB Name				Input Dire	ction	Use MO	TION TFI E	Binary DB.
Reference Node ID					ΟZ	Only 3 r	uns for X, Y	and Z inp
Output Control								
Save Rel Disp Comple	ex TF							
Acceleration Time Histor	y Data	Nodal Outpu	t Data					
Nr. of Fourier Componer	nts 0	Node Num.	x y z x	x yy zz				
Time Step of Control Mc	tion 0							
Multiplication Factor	0							
Max Value for Time Histo	ory 0			Faster	Binar	v DB Po	ost-Proce	essina
First Record	0			for MC			nd DEL	
Last Record	0					(. 1 🗆 1) a		JOF (.ui
Title								
File		Add	Edit	D	elete			
File Contains Pairs Tir	ne Step - Accel.							
Binary Output Option —	Post Processing C	Options						
No Binary	Save Relative I	Displacement in	All Nodes R	estart For Fra	me Generat	ion		
O TFD Binary	Save Rotation	s for ANSYS						
THD Binary								
cessing using l	Dinary DB							

Relative Displacements Computed By Baseline Correction ("Approximate") and RELDISP ("Exact")

68

Computing Output Stresses (STRESS)

EQUAKE SOIL SITE POINT HOUSE FORCE ANALYS MOTION STRESS RELDISP NONLINEAR AFWRITE										
Operation N Type of Analysis Element Output Data										
Image: Solution Image: Solution										
Output Control Auto Computation of Strains in Soil El. Save Stress Time Histories Output Transfer Function Phase Adjustment	es oments ar-Field									
Interpolation Option 0 Smoothing Option 0 Acceleration Time History Data Moment 1-Direction - Node O Moment 1-Direction - Node Nr. of Fourier Components 4096 Time Step of Control Motion 0.005										
Multiplication Factor 0 Max Value for Time History 0.1 First Record 0	No Request Includes 6 TF interpolation algorithms and optional TF smoothing.									
First Record 0 Last Record 0 Title RG160X File C:\ACSv300\DEMO_PROE Binary Output Option Save Max Value Save Binary Database Save Time History Post-Processing using binary DB	-									
Ok Cancel	69									

202

STRESS Analysis Options

Analysis Options	×
EQUAKE SOIL SITE POINT HOUSE	FORCE ANALYS MOTION STRESS RELDISP NONLINEAR AFWRITE
Operation Mod Type of Analysis	Element Output Data
Solution	Group Element List Output Code Add
O Data Check O Foundation Vibration	10 1-28 0000000000 Edit
Output Control	Delete
Auto Computation of Strains in Soil El.	
Save Stress Time Histories	
Output Transfer Function	
Phase Adjustment 0	Components
Interpolation Option	Force NXX O Moment MYY O Moment MYY
Smoothing Option 0	
Acceleration Time History Data	
Nr. of Fourier Components 8192	OForce QYZ Save binary database added to the options
Time Step of Control Motion 0.005	O Moment MXX
Multiplication Factor	Component Request Lement Output Components are different for thick
Max Value for Time History	Shells (8 components instead of 6 components)
First Record 1	OPrint Only Maximum For each input direction the Binary DB name will be
Last Record 5000	OPrint Maximum and Din
Title acc X 8102	Post Processing Options Binary DB name Will De Modelname SIRESS.DIN
File Cytest/teball/acs X 9102 acc	Save Max Value Restart for Nodal Stress Contours
	Save Time History Restart for Soil Pressure Contours
File Contains Pairs Time-step - Accel.	Frame Selection
Binary Processing Option	Section Cut Options
Save Binary Database	Save Time History
	2021 Copyright of Ghiocel Predictive
	Technologies, Inc All Rights Reserved. 5-Dok Cancel 70

Save Inputs for SSI Analysis Run (AFWRITE)

EQUAKE	SOIL	SITE	POINT	HOUSE	FORCE	ANALYS	MOTION	STRESS	RELDISP	NONLINEAR	AFWRITE	
EQUAKE												
SITE												
HOUSE												
PINT												
FORCE												
ANALYS												
		-										
	l											
STRESS			$\overline{\ }$									
RELDISP				\searrow		Savo	the F	havi	Form	at		
	EAR					Jave		incu		al		
						Input	Files	tor F	kunnii	ng		
						The S	SSI Mo	odule	s (FO	RTRAN)	
									- (•	

4. Description of SSI Response Text Files and Frames (for Animations)
Transfer Function (TF), Response Spectra (RS) and Time History (TH) Text Files for Post-Processing

RS	Response s	pectra data i	files generated by the mo	otion module		
	Naming Scl	Naming Scheme for TFU, TFI, TFD, ACC Files				
	Characters 1-5 Node Number					
	Characters	naracters 6-9 Translation (TR) or Rotational (R) degree of freedom				
	Characters	10-11	Damping ratio number			
TFU	Uninterpola	ated accelera	ation transfer functions w	vritten by the motion mo	odule and stress transfer functions	
TFI	Interpolate	d acceleratio	on transfer functions writ	ten by the motion modu	le and stress transfer functions written by the stress module	
TFD	Displaceme	ent transfer f	unctions generated by th	e reldisp module		
THD	Displaceme	ent time histo	ory written by reldisp mo	dule		
ACC	Acceleratio	n time histo	ry written by motion mod	dule		
	Naming Scl	heme for Ac	celeration TFU, Accelerat	tion TFI, TFD, THD, and A	ACC Files	
	Characters	1-5	Node Number			
	Characters	6-9	Translation (TR) or Rota	ational (R) degree of freedom		
тн	Soil time history for layers					
	Naming Scheme					
	ACC*** Accelerati		on time history for soil layer ***		i.e. ACC001.TH is the acceleration time history for soil layer 1	
	SN***	Strain time	history for soil layer ***		i.e. SN001.TH is the strain time history for soil layer 2	
	SS***	Stress time	e history for soil layer ***	* i.e. SS001.TH is the stress time history for soil layer 3		
THS	Stress time	history writ	ten by stress module			
	Naming Scl	heme for TH	S, stress TFU, and Stress	TFI		
	etype_gnu	m_enum_co	mp		e.g. BEAMS_012_00001_FXI.THS	
		etype =	element type			
		gnum =	group number			
enum = element number			element number			
		comp =	stress component			
Frames.txt		•		Post processing frames	s for stress and motion	
ELEMENT_CENT	ER_ABS_MA	X_STRESSES	.тхт	List of maximum stress	ses for each element	
STATIC_SOIL_P	RESSURES.TX	т		Defines additional soil pressure (geological pressure) to be included in soil pressure frames		
SRSSTF.txt				SRSS option in motion 73		

Frame Files for Post-Processing

RS Frames N	RS Frames Naming Scheme			
RS##_freq_f	RS##_freq_filenum			e.g. \RS\RS01_000.10_00001
	## =	Dampin	g number	
	freq =	frequen	су	
	fnum =	Frame n	umber	
TFU Frames	Naming Sc	heme		
TFU_freq_fil	enum			e.g. \TFU\TFU_000.02_00001
	freq =	frequen	су	
	fnum =	Frame n	umber	1
ACC Frames	Naming Sc	heme		e.g. \ACC\ACC_00.000_00001
ACC_time_fi	lenum			
	time =	time		
	fnum =	Frame n	umber	1
THD Frames	Naming Sc	heme		e.g. \THD\THD_00.000_00001
THD_time_fi	lenum			
	time =	time		
	fnum =	Frame n	umber	
Stress Frame	e Naming S	cheme		1
	fnum_com	р		e.g. \NTRESS\stress_00.000_00001_sig
	time =	time		
	fnum =	Frame n	umber	
	comp =	Stress Co	omponent	1
		sig	Solids	Normal Stress
			Shells	Membrane Stress
		tau	Solids	Shear Stress
			Shells	Membrane Shear
		bdsig	Bending	Stress (shell elements only)
		bdtau	Bending	Shear (shell elements only)
Soil Pressure	e Frame Na	ming Sche	eme	
press_time_	fnum_type			e.g. \SOILPRES\pres_00.000_00001_nod
time = time				
	fnum =	Frame n	umber	
	type =	Element	Values or	Nodal Values
		ele	Element	Values 74
		nod	Nodal Va	ilues

Frame Files for Post-Processing (cont')

Maximum V	Maximum Value Frames				
Stress	Stress				
stress_ABS_	stress ABS MAX comp			e.g. \NSTRESS\stress_ABS_MAX_sig	
	comp =	= Stress C	omponent		
		sig	Solids	Normal Stress	
			Shells	Membrane Stress	
		tau	Solids	Shear Stress	
			Shells	Membrane Shear	
		bdsig	Bending	Stress (shell elements only)	
		bdtau	Bending	Shear (shell elements only)	
Soil Pressure	2				
press_ABS_	press ABS MAX type e.g. \SOILPRES\pres ABS MAX nod				
	type = Element Values or Nodal Values			Nodal Values	
ele Element V			Element	Values	
nod Nodal Val			Nodal Va	lues	

5. Main UI Menus for Model Inputs, Performing SSI Analysis and Plotting Results

ACS SASSI Model Input File Capabilities

ACS SASSI SSI Analysis Capabilities

ACS-SASSI User Interface

ACS SASSI Graphical Processing Capabilities

Jac.

ACS-SASSI User Interface					
Model File Plot Modules	Options View Help				
Model	> 📦 🏯 🗯 🖄 🜑 🚍 🕍 💁 🖡 🔸 🧿 🍾 🛛 ন্দ্র 🖉				
Cuts	¥ 8 8 ₹ \$ ₩ \$				
Spectrum TFU-TFI					
Time History					
Soil Layers					
Soil Properties					
Non Uniform Soil Field					
Process Animation					
Bubble	Plot model submodels				
Vector	inpute and CO menonese				
Contour	inputs, and SSI responses				
Deformed Shape					

SSI Response Post-Processing Options

User Interface:

Binary Databases:

- Generate BDBs for each input direction; select flag for BDB
- Combine BDBs for three input direction using UI commands
- Use the XYZ combined BDB to extract frames at selected time steps or maximum values (text frame tables)
- UI command is designed for extracting selected time histories from BDB (Demos 3 and 13)

Text Files (.acc or .thd files):

- Combine .acc or .thd node/dof history
- Use UI macros (Demo 3)

Checking SSI Interaction Nodes

6. UI General Commands

General Commands

Older General Commands

	Command	Action	Description
	ACCIN	Sets the acceleration time history input file for ACS SASSI EQUAKE module.	Section 9.2.1
	ACCOUT	Sets the acceleration time history output file for ACS SASSI EQUAKE module.	Section 9.2.2
•	AFWRITE	Writes the analysis files.	Section 9.2.3
	AMP	Defines spectral amplification ratios for ACS SASSI HOUSE module.	Section 9.2.4
	ANALYS	Defines analysis options for ACS SASSI ANALYS module.	Section 9.2.5
	AOPT	Sets options for AFWRITE and CHECK.	Section 9.2.6
	CHECK	Checks data.	Section 9.2.7
	CORR	RR Sets spectra correlation values for ACS SASSI EQUAKE module.	
	DAMP	Adds / resets damping ratios for RS analysis.	Section 9.2.9
	DYNP	Defines data for dynamic soil properties.	Section 9.2.10
	EOUT	Adds element output request for ACS SASSI STRESS module.	Section 9.2.11
	EQTIT	Defines spectra title for ACS SASSI EQUAKE module.	Section 9.2.12
	EQUAKE	Defines analysis options for ACS SASSI EQUAKE module.	Section 9.2.13
	FORCE	Defines analysis options for ACS SASSI FORCE module.	Section 9.2.14
	FREQ	Adds / deletes frequency numbers to / from frequency set.	Section 9.2.15
	HOUSE	Defines analysis options for ACS SASSI HOUSE module.	Section 9.2.16
	INCOH	Defines incoherence analysis options for ACS SASSI HOUSE module.	Section 9.2.17
	INP	Switches input to file.	Section 9.2.18
	LFREQ	Lists frequency sets.	Section 9.2.19

General Commands (cont.)

ME	Defines input motion data for ACS SASSI HOUSE module.	Section 9.2.20
MOPT	Changes the model options.	Section 9.2.21
MOTION	Defines analysis options for ACS SASSI MOTION module.	Section 9.2.22
NOUT	Adds nodal output request for ACS SASSI MOTION module.	Section 9.2.23
POINT	Defines analysis options for ACS SASSI POINT module.	Section 9.2.24
RESUME	Re-loads the active model.	Section 9.2.25
RSIN	Sets the response spectrum input file for ACS SASSI EQUAKE module.	Section 9.2.26
RSOUT	Sets the response spectrum output file for ACS SASSI EQUAKE module.	Section 9.2.27
SACC	Sets the acceleration output options for ACS SASSI SOIL module.	Section 9.2.28
SAVE	Saves active model.	Section 9.2.29
SFOU	Sets the Fourier spectrum output options for ACS SASSI SOIL module.	Section 9.2.30
SITE	Defines analysis options for ACS SASSI SITE module.	Section 9.2.31
SOIL	Defines analysis options for ACS SASSI SOIL module.	Section 9.2.32
SPRO	Defines soil profile data for ACS SASSI SOIL module.	Section 9.2.33
SRS	Sets the response spectrum output options for ACS SASSI SOIL module.	Section 9.2.34
SSAF	Sets the spectral amplification factor output options for ACS SASSI SOIL module.	Section 9.2.35
SSTR	Sets the stresses and strains output options for ACS SASSI SOIL module.	Section 9.2.36

General Commands (cont.)

	STATUS	Lists general information.	Section 9.2.37
	STRESS	Defines analysis options for ACS SASSI STRESS module.	Section 9.2.38
X	SYMM	Sets information for symmetry / anti-symmetry plane / line	Section 9.2.39
	THFILE	Sets acceleration time history file.	Section 9.2.40
	THTIT	Sets title for acceleration time history.	Section 9.2.41
	TPSD	Use the Target PSD functionality of ACS SASSI EQUAKE	Section 9.2.42
	TIT	Sets the model title.	Section 9.2.43
	TOPL	Adds / deletes top layers for ACS SASSI SITE module.	Section 9.2.44
	WAVE	Defines wave information for ACS SASSI SITE module.	Section 9.2.45
	WPASS	Defines wave passage data for ACS SASSI HOUSE module.	Section 9.2.46
	WRITE	Writes model data to an input file.	Section 9.2.47
	RELD	Writes Relative Displacement Options	Section 9.2.48
	RELFILE	Writes the Relative Displacement Reference File.	Section 9.2.49
	RDND	Write a node to the Relative Displacement Output Node List	Section 9.2.50

General Commands (cont.)

	Command	Action	Description
	ACTM	Change the Active model	Section 9.6.1
	AFWRBAT	Split SSI analysis set into multiple sets	Section 9.6.2
	CPMODEL	copy the active model to another model	Section 9.6.3
	CRITFREQ	frequencies where the interpolation and actual simulated results differ	Section 9.6.4
	DMODEL	Delete a model from ACS SASSI User Interface memory	Section 9.6.5
	ETYPEGEN	Modify the element types for the models	Section 9.6.6
	FIXSLDROT	Fix the solid rotations in a model	Section 9.6.7
	FIXSHLROT	Fix the shell rotations in a model	Section 9.6.8
	FIXSPRROT	Fix the spring rotations in a model	Section 9.6.9
~	FIXROT	Fix the rotations in a model	Section 9.6.10
	FRAMECOMBIN	Combine frame files	Section 9.6.11
	FRAMESEL	Identify local max/min of time history	Section 9.6.12
	GCOM	Compress group numbers	Section 9.6.13
	GETENV	Display solver environment variables	Section 9.6.14
	GRAVITY	Sets Gravity value for the model	Section 9.6.15
	GROUNDELEV	Sets Ground Elevation for the model	Section 9.6.16
	GROUPMAT	Sets a material for each group	Section 9.6.17
	HVDBAT	Writes a batch run file for models with HVD elements	Section 9.6.18
-	INTGEN	generate interaction node if embedment is explicitly defined	Section 9.6.19
-	MDL	Change the Model name and path for uses with save, resume and AFWRITE	Section 9.6.20
	MDLNAME	Change the Model Name without changing the path or model title	Section 9.6.21
	NCOM	Compress Node Numbers in a Model	Section 9.6.22
	MODELLIST	Show the models that have been defined and their names	Section 9.6.23
	MODFRAMES	Modify legacy frames files for the new frame format	Section 9.6.24
-	RADIUS	Write a radius for non uniform soil	Section 9.6.25
	RMVUNUSED	Remove Unused nodes from the model	Section 9.6.26
	SETENV	Set solver environmental variables	Section 9.6.27

WARNING: Most of the commands shown below can be alternatively defined more conveniently using the UI menu selection for the Option/Analysis. Then, the entire input file (the modelname.pre extension text file) including all the user inputs in the UI windows dialogs can be save using the WRITE command. The created .pre input file will contain all the user inputs organized in a logical sequence convenient for review and checking.

WRITE Command

Write Model data to a Prep Input file.

WRITE,[<file>],[<path>]

creates the file named <file> in which all existent data is stored as instruction lines, so that the active model can be reloaded using the INP instruction (see section , page). If the parameter is missing, the file will have the model's name with the ".pre" extension. The default path for <file> is the model's path.

Once you have created and saved a model, the data is stored in a sequence of files in the model's directory. If you want to keep the model only for further reference (the model will not be used often) you can produce an input file using the WRITE instruction. The file <file> is an ASCII file in which data is stored in PREP instructions. When you need to reload the model, type INP,<file> and the model's files will be rewritten.

AFWRITE Command

<u>AFWR</u>ITE

Afwrite will write the module input data files that the user requests. These files are written to the modeldirectory using the modelname with a different extension for each input file requested. Setting up an analysis can be difficult and required multiple commands or the use of the user interface to do properly.

Running Module Commands

Module Commands

Command	Action	Description
RUNANALYS	Run the ANALYS module in the ACS SASSI User Interface	Section 9.11.1
RUNCOMBIN	Run the COMBIN module in the ACS SASSI	Section 9.11.2
RUNFORCE	Run the FORCE module in the ACS SASSI User Interface	Section 9.11.4
RUNHOUSE	Run the HOUSE module in the ACS SASSI User Interface	Section 9.11.5
RUNMOTION	Run the MOTION module in the ACS SASSI User Interface	Section 9.11.6
RUNPOINT	Run the POINT module in the ACS SASSI User Interface	Section 9.11.7
RUNRELDISP	Run the RELDISP module in the ACS SASSI User Interface	Section 9.11.8
RUNSOIL	Run the SOIL module in the ACS SASSI User Interface	Section 9.11.9
RUNSTRESS	Run the STRESS module in the ACS SASSI User Interface	Section 9.11.10

SETENV Command

SETENV,<mem>

<mem> - The Memory size limit that the fast solver is allowed to use in megabytes. It is suggested that user set the size limit at 90 - 95% of physical RAM on the system. If the user attempts to allocate more than 100% of physical memory the fast solver has shown sometime to return incorrect results.

This command shall be used after software installation when the UI is launched for the first time. Sets the environment variables for the fast solver modules. The command sets three environment variables in the users registry. The environment variables are local to each user account and are persistent once they have been set. This command should be run by each user account.

GETENV Command

GETENV

This command shows the environment variables for the fast solver and the values of those environment variables.

AFWRBAT Command

AFWRBAT,<splits>

<splits> - number of sections the frequency set will be split into.

The AFWRBAT command allows the user split a simulation across multiple systems by frequency set into multiple models each with a separate frequency subset in separate folders. The folders can then be transferred to different systems and batch files created by this command run the necessary modules, then the data from each model can be combined by another batch file created by this command.

The command uses model data defined by MDL command to determine the name and location of the new folders that are created.

CRITFREQ Command

CRITFREQ,<tol>,<minfilter>,<TF>,<Var>

<tol> - percentage difference between the TFU and TFI that will cause the frequency to be added to the result.

<minfilter> - percentage below the global maximum where differences between the
TFU and TFI should be ignored.

<TF> - name of the transfer function file for which the .TFI peak and .TFU values are compared.

<Var> - Variable name that includes the results of the critical frequency command application.

This command allows the user to identify automatically the frequencies where the interpolated ATF peaks are significantly different from the computed ATF values in the vicinity of the frequency of the interpolated ATF peak. These are identified frequencies should be added to the SSI input analysis. The user controls the results of this command with the <tol> and the <minfitler> argument. The full path name of the .TFU or .TFI files without these extensions should be included in the TF argument. The identified frequencies will be stored in the variable named in the last argument.

FIXROT to automatically add the needed soft rotational springs to improve numerical conditioning for detailed flat SHELL models (for the Kirckhoff plate element the drilling degree of freedom has no stiffness associated with it, and therefore could produce poorly conditioned or unstable numerical models). Not required for the TSHELL elements.

FIXROT,<Stiff>.

Example code for fixing free shell drilling rotations in a FEA model.

Actm,1 Inp, Example_Model.pre *Add soft springs with overall stiffness 10 at the oblique SHELL nodes; FixRot,10

8. Batch Run Mode Commands for SSI Modules and Auxiliary Programs

Batch SSI Module Runs

If the SSI runs are done in the batch mode under a DOS window, then, a batch file needs to be created. To run a SSI module in batch mode, the following DOS command is required:

SSI_module_name.exe < SSI_module_name.inp

where SSI_module_name could be SITE, or POINT or ANALYS. The SSI module executables are installed by default in the ACS_C directory on the hard drive, and are also provided on the ACS SASSI installation DVD in the Batch. Each input file with the SSI_module_name and the extension .inp contains only three input lines:

modelname

modelname.ext_input

modelname_SSI_module_name.out

where ext_input is the extension provided by the ACS SASSI UI AFWRITE command.

For complex batch run file scripts, see Demo 16, 17 or 18. 2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Batch File for Nonlinear Soil SSI Analysis for X-Dir

1	REM Embedbment Example Batch Mode		Explain .in files
2	REM This batch file is used to run the SSI modules	for the embedded example.	
3	@echo off		Demo4
4			Demo4.soi
5	REM FIRST ITERATION		Demo4_Soil.out
6	C:\acsv300\EXEB\Soilb.exe < Soil.in RE	f Runs the soil module with inputs defined in the Soil.in file	
7	C:\acsv300\EXEB\Siteb.exe < Site.in RE	I Runs the site module with inputs defined in the Site.in file	Demo4
8	C:\acsv300\EXEB\Point3b.exe < Point.in RE	I Runs the point module with inputs defined in the Point.in file	Demo4.sit
9	C:\acsv300\EXEB\Houseb.exe < House.in RE	I Runs the house module with inputs defined in the House.in file	Demo4_Site.out
10	C:\acsv300\EXEB\Analysb.exe < Analys.in RE	I Runs the analys module with inputs defined in the Analys.in file	
11	C:\acsv300\EXEB\Stressb.exe < Stress.in RE	I Runs the stress module with inputs defined in the Stress.in file	Demo4
12			Demo4.poi
13	REM SECOND ITERATION		Demo4_Point.out
14	C:\acsv300\EXEB\Houseb.exe < House.in RE	I Runs the house module with inputs defined in the House.in file	
15	C:\acsv300\EXEB\Analysb.exe < Analys.in RE	f Runs the analys module with inputs defined in the Analys.in file	Demo4
16	C:\acsv300\EXEB\Stressb.exe < Stress.in RE	f Runs the stress module with inputs defined in the Stress.in file	Demo4.hou
17			Demo4_House.out
18	REM THIRD ITERATION		
19	C:\acsv300\EXEB\Houseb.exe < House.in RE	I Runs the house module with inputs defined in the House.in file	Demo4
20	C:\acsv300\EXEB\Analysb.exe < Analys.in RE	I Runs the analys module with inputs defined in the Analys.in file	Demo4.anl
21	C:\acsv300\EXEB\Stressb.exe < Stress.in RE	I Runs the stress module with inputs defined in the Stress.in file	Demo4_Analys.out
22			
23	REM POST PROCESSING		Demo4
24	C:\acsv300\EXEB\Motionb.exe < Motion.in	REM Runs the motion module with inputs defined in the Motion.in fi	ile Demo4.mot
25	C:\acsv300\EXEB\Stressb.exe < Stress_Post.in RE	I Runs the stress module for post processing with inputs defined in the Stre	_{SS_P} Demo4_Motion.out
26	C:\acsv300\EXEB\Reldispb.exe < ReldispX.in RE	1 Runs the reldisp module for x direction with inputs defined in the Reldisp)	(.in
27	C:\acsv300\EXEB\Reldispb.exe < ReldispY.in RE	I Runs the reldisp module for y direction with inputs defined in the Reldisp	.inDemo4
28	C:\acsv300\EXEB\Reldispb.exe < ReldispZ.in RE	I Runs the reldisp module for z direction with inputs defined in the Reldisp?	.inDemo4.str
29			Demo4_Stress.Out

ACS SASSI V4.3 Includes 6 Auxiliary Programs

BuildFile77_Embedded_Incoherency – Incoherent SSI for DES

COMB_XYZ_ACC_for_RS – Combine X, Y and Z acceleration histories **COMB_XYZ_THD_Option_NON** – Combine X, Y, Z nodal displacements **COMB_XYZ_STRAIN_Soil_Nonlinear** – Combine X, Y, Z soil shear strains

File8_add_cp_resp_Option_AA – Adjust FILE8 after ANSYS runs w/ CP

Remove_Frequencies_from_FILE8 – Remove unstable solutions

Auxiliary Programs Used Only for Specific Tasks

COMB_XYZ_STRAIN applicable to 3D nonlinear soil site response or SSI analysis using iterative equivalent linear procedure. Combines three directional shear-strains for X, Y and Z inputs in the nonlinear soil solid elements at each SSI iteration.

COMB_XYZ_THD applicable to nonlinear structure SSI analysis using iterative equivalent linear procedure (*for Option NON*). Combines directional node displacements for nonlinear shell walls and spring elements at each SSI iteration.

BuildFile77 applicable to incoherent SSI analysis of deeply embedded structures, such as SMRs. Permits performing incoherent SSI analysis for basements with different level node coordinates & configurations or when incoherent input has different coherence functions at different depths. *NOTE: Still needs extra checks on incoherent mode signs*

7. UI Commands for Generating and Checking FE Models

Building ACS SASSI Model Using UI Converters

ANSYS .cdb to .pre Converter			X
Input File Name			Convert
		<<	Cancel
Output .pre File Name			
		<<	
Save Converted Data to Model Number		Two conve	rters to translate
Enter Value for Gravity		SASSI input input form	t into the ACS SASSI at or SASSI2000.
Disclaimer: This converter has had limited in some cases. Please check all models fo	d testing and may provid or accuracy before simu	de inaccurate da lation.	ta

ANSYS Model Converters To and From ACS SASSI

File Conversion Commands

	Command	Action	Description
,	ANSYS	Write model to ANSYS [®] input format	Section 9.10.1
	ANSYSMODELTYPE	Change the model type for the Advanced ANSYS® option	Section 9.10.2
	ANSYSREFORMAT	Reformat the beam groups to work better for ANSYS® write	Section 9.10.3
, [CONVERT	Use one of the file converters to translate a file	Section 9.10.4

Model Generation & Combination Commands

Model Generation & Combination Commands

	Command	Action	Description
*	CONDMAP	Create node mapping file for impedance condensation	Section 9.8.1
,	EXCAV	Create an Excavation volume for a model	Section 9.8.2
	MERGE	Merge two models	Section 9.8.3
	MERGEGROUP	Merge two groups together	Section 9.8.4
	MERGEPANEL	Merge a Panel Model to the Solids and beams of the original model	Section 9.8.5
~	MERGESOIL	Merge a Structural Model With a Matching Soil	Section 9.8.6
	ROTATE	Rotate the model around a point	Section 9.8.7
	SOILCONTACT	Generate contact elements for Option A	Section 9.8.8
	SOILMESH	Create a soil mesh for the active model	Section 9.8.9
,	TRANSLATE	Translate all nodes a specified distance	Section 9.8.10
	WELD	Combine nodes that share the same location	Section 9.8.11

EXCAV command creates an excavation model for a structural model that doesn't have an excavation

Example code to create an excavation model for a structural model (.pre).

Actm,1 INP, Example_model.pre EXCAV,2 ACTM,2 * Write .pre file for the excavation model 2 Write, Example_Excavation.pre

MERGESOIL,

<Struct>,<Soil>,[Mode],[StiffStiff],[StiffSoft],[SepLevel],[Mapping]

This command is used to merge the structural and the excavation volume models together in a new

active SSI FEA model.

<Struct> - Model Number of the Structure

- <Soil> Model Number of the Excavation volume
- [Mode] Merging nodes on the structure excavation interface
- = 0 Unbonded lateral foundation-soil interface with side solid
- = 1 Bonded lateral foundation-soil interface (default)
- = 2 Bonded foundation-soil interface using duplicate nodes connected by stiff springs

= 3 Unbonded foundation soil-interface using duplicate nodes connected by soft springs

- [StiffStiff] Stiff spring stiffness for Modes 2 and 4. (Default = 10^7)
- [StiffSoft] Soft spring stiffness for Modes 3. (Default = 10)

[SepLevel] - Global z-coordinate level for depth where soil separation occurs [Mapping] - This is mapping filename for the duplicate node merging 2021 Copyright of Ghiocel Predictive Technologies, Inc., All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes **INTGEN** to generate automatically interaction nodes for different substructuring approaches FV, FI-FSIN (SM), FI-EVBN (MSM) and Fast FV.

INTGEN,<type>,<skip> to generate the interaction nodes based on the selected SSI substructuringapproach. The excavation volume must be explicitly defined by the ETYPE command for options 1-3. If the ETYPE is left to default values, this command will not work.

<type> :Type of iteration node generation

- = 1 for Embedded Foundation Flexible Volume (FV)
- = 2 for Embedded Foundation Flexible Interface with Excavation Volume Boundary Nodes, denoted FI-EVBN or Modified Subtraction Method (MSM)
 = 3 for Embedded Foundation - Flexible Interface with Foundation-Soil Interface Nodes, denoted FI-FSIN or Subtraction Method (SM)
- = 4 for Surface Foundation (interaction nodes are only at ground surface)
- = 5 for FFV with multiple internal interaction node layers using <skip level>
- = 6 add Z-level interaction nodes using <skip level>

CONDMAP Command (for FVROM approach)

CONDMAP,<excav>

This command builds a mapping file between interaction nodes and coincidental structural nodes. The command finds all of the interaction nodes in the excavation model. Then the command will find the first coincidental structural node found in the structural model.

The structural model is considered to be the current active model. The excavation model must have the interaction nodes defined before using this command.

The file written will have the file name "INT_NODES_IF" and will be found in the active model directory. Users should have defined the active model directory by using the <u>MDL</u> command. The first line of the file is number of interaction nodes in the model. Then each line subsequent line will have the interaction node and structural node separated by a space.

•excav - excavation model number.

Building SSI Model by Merging Structure and Excavation Models (as used in Option AA)

It is assumed that the ground surface is at Z=0. and the FV method will be used

*Convert ANSYS Structure.cdb in Model 1 Actm, 1 Convert, ansys, struct.cdb, 32.2 Etypegen,1 Actm,2 Convert, ansys, Soil.cdb, 32.2 * Define excavation elements of type 2 Etypegen,2 * Create SSI model by combining Models 1 and 2 in Model 3 Actm,3 MergeSoil, 1, 2, 1, , , , mappingfile.txt

Groundelev, 0

Intgen, 1

SOILCONTACT Command

SOILCONTACT

This command will add two groups of planes to the active model. The first group of plane elements will share nodes with models interface with the excavation volume. The second group of plane elements will be built with coincident nodes to the first group of quadrilateral elements and all the nodes of the second group are created by this command. All of the new nodes will be added to the end of the node list of the active model.

A map of the coincident node of the 2 Planes will be written to an ASCII format file modelname_Contactmap.txt.

This command is intended to be used to create contact/target surface elements when creating an ANSYS® model with contact surfaces between foundation and surrounding soil for Option A.

SSI Model Checking UI Commands

Model Checking Commands

Command	Action	Description
EXCSTRCHK	Checks excavation nodes for potential errors	Section 9.7.1
FIXEDINT	Find Fixed Interaction Nodes	Section 9.7.2
FREESPRING	Find Free Spring Nodes	Section 9.7.3
HINGED	Check model for possible hinged connections	Section 9.7.4
INTCOUNT	Display a count of interaction nodes	Section 9.7.5
KINT	Find K node that are interaction nodes	Section 9.7.6
USED	Check and fix Unused nodes	Section 9.7.7

EXCSTRCHK Command

EXCSTRCHK

This command checks if the Excavation interior nodes are common with the Structure basement nodes. This will be incorrect from a SASSI modeling point of view. A list detailing the shared nodes will be printed to the command history. The number of entries in the list is controlled by the Check Options break message number.

This command does not change the active model in any way.
HINGED checks model to find all hinged connections between solids and shell and beams and beams and shells. Write warnings for hinged nodes.

These hinged connections could be potentially indicate incorrect FE modelling, since the node rotations from beams and shells are not transmitted to solids at the common nodes, and the node rotations from beams are not transmitted the in-plane shell rotations at the common nodes (the drilling dof equations have no stiffness terms by default)

FIXEDINT checks if there are interaction nodes that are fixed by mistake

Nonlinear & Panel Commands (for Option NON and MS) Nonlinear & Panel Commands

Command	Action	Description
В	Nonlinear Beam Definition	Section 9.16.1
BBC	Add a backbone curve from a file	Section 9.16.2
BBCGEN	Generate BBC curves for defined panels	Section 9.16.3
BBCI	Sets BBC information	Section 9.16.4
BBCP	Defines single point on BBC	Section 9.16.5
BBCX	Backbone curve definition command	Section 9.16.6
BBCY	Backbone curve definition command	Section 9.16.7
BEAMPILE	Separates piles from model, and reconnects them with a spring at pile interface	Section 9.16.8
DCOUPLEBEAM	Add Springs at beam intersections	Section 9.16.9
DELBBC	Delete Backbone Curves	Section 9.16.10
DELBM	Delete Nonlinear Beam	Section 9.16.11
DELNLS	Delete Nonlinear Soil Layers	Section 9.16.12
DELSPR	Delete Nonlinear Spring	Section 9.16.13
DGRDFLR	Modify Young's modulus of floor panel	Section 9.16.14
EDGE	Split panel based on edges	Section 9.16.15
EDGEMODEL	Applies the EDGE command to all of the wall groups	Section 9.16.16
EQL	Nonlinear analysis options	Section 9.16.17
MERGEPANEL	Merge a Panel Model to the Solids and beams of the original model	Section 9.16.18
NLSLAYER	Add a nonlinear soil layer definition	Section 9.16.19
NLSOIL	Set Parameters for the nonlinear soil option	Section 9.16.20
NONLINBAT	Create a Generic Nonlinear Batch Run	Section 9.16.21
NONLINMOTDISP	Add panel corner nodes to output request list	Section 9.16.22

Nonlinear Modeling Commands (for Option NON and MS)

P	Add a panel to the active model	Section 9.16.23
PANELIZE	Separate Shells in the model into Panels	Section 9.16.24
PDEL	Delete panel(s) from the active model	Section 9.16.25
PLIST	List or check panel(s) in the active model	Section 9.16.26
PNLGEN	Create panel definitions for shell groups	Section 9.16.27
S	Nonlinear Spring definition command	Section 9.16.28
SOILREDEF	Redefine excavation volume layers based on a 2D soil model	Section 9.16.29
SOLIDPILE	Separates piles from model, and reconnects them with a spring at pile interface	Section 9.16.30
UNIPNL	Create unique group for each element of a group	Section 9.16.31
WALLFLR	Separate shells walls and floors into separate groups	Section 9.16.32
		•

9. Post-Processing of SSI Responses Using UI Plotting Commands and Binary Databases

Post-Processing Plotting Commands

Plot Commands

Command	Action	Description
ADDITION	Add line together and store it	Section 9.13.1
AVERAGE	Calculate the average of a group of line and store in a line	Section 9.13.2
AXES	Change the axes in a 2d model plot	Section 9.13.3
BROADEN	Broaden Selected line and stave results to selected line	Section 9.13.4
BUBBLEPLOT	Plot Bubble (ZPA) for the model	Section 9.13.5
CAPTUREPLOT	Screen capture of the current plot	Section 9.13.6
CLOSEPLOT	Close the current plot	Section 9.13.7
CNGCENTER	Change the center of rotation for the 3d model plot	Section 9.13.8
CNGVIEW	Change the view of the current 3d model plot	Section 9.13.9
COLOR	Change the color in the color list	Section 9.13.10
CONTOURPLOT	Plot a 3d Contour plot	Section 9.13.11
CUTPLOT	Plot the 3d model with what elements are in the cut	Section 9.13.12
DEBUG	Display 3d debug text to the screen	Section 9.13.13
DEFORMPLOT	plot a 3d deformed shape plot	Section 9.13.14
ELECOLOR	Change element property coloration	Section 9.13.15
ELENUM	Show/Hide Element numbers on active plot	Section 9.13.16
GROUPNUM	Show/Hide Group numbers on active plot	Section 9.13.17

Post-Processing Commands

1	I Contraction of the second	•
LBINCORS	Calculate the Lower Bound Incoherent Response Spectra	Section 9.13.18
LAYERPLOT	Plot a 2d cross section of the models soil layers	Section 9.13.19
LINECOMBIN	Linearly combine a set of lines with scalars	Section 9.13.20
LINENAME	Change the name of a line in memory	Section 9.13.21
MARKERS	Add markers to a line	Section 9.13.22
MODELPLOT	Plot a 3d model plot	Section 9.13.23
NODENUM	Show/Hide Node Number on active plot	Section 9.13.24
NODEPLOT	Plot a 3d node plot	Section 9.13.25
NODESEL	Select a node on a 3d plot	Section 9.13.26
PAUSE	Start or stop and animation	Section 9.13.27
PLOTRANGE	Change the range of the axes on a 2d plot	Section 9.13.28
PLOTTITLE	Change the title of a plot	Section 9.13.29
PROCFRAME	Process the frame animation files	Section 9.13.30
READSPEC	Read a spectrum file	Section 9.13.31
READTH	Read a File in the Time history format	Section 9.13.32
RSTCENTER	Reset the Center to Default	Section 9.13.33
RSTVIEW	Reset the View to Default	Section 9.13.34
SHADEROPTIONS	Change the shader options for the current plot	Section 9.13.35
SHOWDOF	Show the fixed degrees of freedom in some 3D plots	Section 9.13.36

Post-Processing Plotting Commands

SHOWMASS	Show the lumped masses in some 3D plots	Section 9.13.37
SHRINK	Shrink the elements in the Element Plot	Section 9.13.38
SOILPROPPLOT	Create a 2d soil property plot	Section 9.13.39
SPECPLOT	Plot a spectrum plot	Section 9.13.40
SRSS	Combine lines using srss	Section 9.13.41
STIPPLE	Stipple line in a plot for Black and white printing	Section 9.13.42
SUBTRACTION	Subtract lines and store into another line	Section 9.13.43
THPLOT	Create a 2d time history plot	Section 9.13.44
VECTORPLOT	Plot a 3d vector plot with the current model	Section 9.13.45
WINDOWSETTINGS	Change the Windows Setting for the current plot	Section 9.13.46
WIREFRAME	Show the wireframe of the Element Plot	Section 9.13.47
WRITESPEC	Write a line in the spectrum file format	Section 9.13.48
WRITETH	Write a line in the time history file format	Section 9.13.49
XTITLE	Change the X axis title for a 2D graph	Section 9.13.50
YTITLE	Change the left side Y axis title for a 2D graph	Section 9.13.51
YTITLE2	Change the right side Y axis title for a 2D graph	Section 9.13.52

READSPEC Command

READSPEC,<SpecFile>,<numLines>,<Line1> ... <LineN>

Reads a spectrum file into a line object for plotting.
SpecFile – Full path of the spectrum file to be read
numLines – number of data columns to be read from the file

•Line - Line Reference Number for each line object to be read

NOTE: Line objects in ACS SASSI are read from the columns in a data file. For TFI, TFI, TFD, and RS files, the frequency column should not be counted in the <numLines> argument.

For example, an RS file has a column for frequency and a column for acceleration. In this case, <numLines> is 1 because there is only one column of data to be read into a line object for plotting.

UI Commands for Post-Processing and Plotting of SSI Result Text Files – Example for RS and ATF

Post-Processing Commands Using Binary Databases

Binary Database Commands

Command	Action	Description
ACCDBANI	Creates an animation from the acceleration binary database in memory	Section 9.17.1
ACCDBTHFILE	Write ASCII time history files from the binary ACC database	Section 9.17.2
BINFRAMEOUT	Write frame files from a database	Section 9.17.3
BINOUT	output flags for binary files	Section 9.17.4
BINSTRTBL	Output selected stresses from a group in an ACSII CSV format	Section 9.17.5
COMBACCDB	Combine three databases acc binary format	Section 9.17.6
COMBDISPDB	Combine three databases int the disp/acc binary format	Section 9.17.7
COMBDISPDIR	Combine three displacement component binary files into a complete displacement database	Section 9.17.8
COMBTHSDB	combine stress binary database from file	Section 9.17.9
DELDB	Delete a database from User Interface Memory	Section 9.17.10
DISPDBANI	Creates a animation from the displacement binary database in memory	Section 9.17.11
DISPDBTHFILE	Write ASCII time history files from the binary Displacement database	Section 9.17.12
LOADACCDB	Load a acceleration binary database from file	Section 9.17.13
LOADDISPDB	Load a displacement binary database from file	Section 9.17.14
LOADTHSDB	Load a stress binary database from file	Section 9.17.15
MAXDBFRAME	create a frame with the global maximum for all components	Section 9.17.16
RELBIN	Sets options for using binary TFI files with RELDSIP	Section 9.17.17
THSDBANI	Creates a animation from the stress binary database in memory	Section 9.17.18
THSDBTHFILE	Write ASCII time history files from the binary stress database	Section 9.17.19

BINOUT Command

BINOUT,[mot],[str],[reldisp]

BINOUT command sets the binary options for the inputs of the SSI modules such as MOTION, RELDISP and STRESS. If an argument is left blank the value of the associated flag remains unchanged

- MOTION nodal acceleration history binary database
 - 0 Do not write database
 - 1 Write binary database
- STRESS the element stress/force/moment history binary database
 - 0 Do not write database
 - 1 Write binary database
- RELDISP nodal displacement history binary database
 - 0 Do not write database
 - 1 Not used in this version
 - 2 Write binary database

COMBACCDB Command

COMBACCDB,<Xfile>,<Yfile>,<Zfile>,<Comb>

Combine *three acceleration history binary databases* for X, Y and Z seismic input into a single database.

•Xfile - full path name of the x direction binary database

- •Yfile full path name of the y direction binary database
- •Zfile full path name of the z direction binary database
- •Comb full path name of combined direction binary database

COMBDISPDB Command

three displacement history binary databases

COMBTHSDB Command

Three element stress history binary databases

LOADACCDB Command

LOADACCDB,<file>

Load the MOTION created acceleration history binary database into the UI memory. Only a single acceleration binary database can be loaded into the UI memory at a time

•file - full path name of binary acceleration database

LOADDISPDB Command

Load the RELDISP created displacement history binary database

LOADTHSDB Command

Load the STRESS created element stress history binary database

Post-Processing SSI Responses Using Binary Databases Described in Detail in Demo 13

* **Define Variable for Working Directory** VAR,PATH,C:\ACSV300\Demo_Problems\Demo13

* Combining SSI Responses Computed for X, Y and Z Inputs Using Binary Databases for MOTION, RELDISP and STRESS

COMBACCDB,@PATH[1]\XDIR\ABShear_ACC.bin,@PATH[1]\YDIR\ABShear_ACC.bin,@P ATH[1]\ZDIR\ABShear_ACC.bin,@PATH[1]\Combined\ABShear_ACC.bin,0 COMBDISPDB,@PATH[1]\XDIR\ABShear_thd.bin,@PATH[1]\YDIR\ABShear_thd.bin,@PAT H[1]\ZDIR\ABShear_thd.bin,@PATH[1]\Combined\ABShear_thd.bin,0 COMBTHSDB,@PATH[1]\XDIR\ABShear_STRESS.bin,@PATH[1]\YDIR\ABShear_STRESS .bin,@PATH[1]\ZDIR\ABShear_STRESS.bin,@PATH[1]\Combined\ABShear_STRESS.bin,0

* Loading Binary Databases into the ACS SASSI UI for Fast SSI Response History Post-Processing LOADACCDB,@PATH[1]\Combined\ABShear_ACC.bin

LOADACCDB,@PATH[1]\Combined\ABShear_ACC.bin LOADDISPDB,@PATH[1]\Combined\ABShear_THD.bin LOADTHSDB,@PATH[1]\Combined\ABShear_STRESS.bin

ACCDBANI Command

ACCDBANI,<dir>,[label]

Create the SSI model animation from the nodal acceleration binary database that is loaded in the UI memory •dir – work directory for the animation files. •label – description label of the animation data. This label is stored in the animation database under Process Animation, and is used to identify the selected animation file when the animation data is loaded/reloaded

DISPDBANI Command

Create the SSI model animation from the nodal displacement binary database

THSDBANI Command

Create the SSI model animation from the element stress binary database

MAXDBFRAME Command

MAXDBFRAME,<Type>,[dir]

This command will find the maximum component values of for a binary database loaded into UI memory. The data will be written in a binary database file located in either the working directory or an user defined directory.

- •Type Database used to make the frame
 - THS Stress
 - DISP Displacement
 - ACC Acceleration

•dir - directory where the frame file will be written. (default: current working directory)

BINSTRTBL Command

BINSTRTBL,<group>,<EVar>,<file>,[step]

Create a text table format for selected stresses.

Gr. El	em.	SXX	SYY	TXY	MXX	MYY	MXY
34	1	0.0619	1.3769	1.7051	0.2896	0.2343	0.3228
34	2	0.0092	1.6048	2.6930	0.2101	0.8928	0.1681
34	3	0.1953	1.0696	2.6461	0.5233	0.8652	0.1771
34	4	0.1861	0.7625	2.1855	0.2927	1.1031	0.1119
34	5	0.0589	0.8005	4.2785	0.5619	1.8940	0.0472
34	6	0.0849	0.7012	4.9323	0.8285	1.8190	0.1373
34	7	0.0262	0.6604	3.4275	0.6116	0.2215	0.4655
34	8	0.0329	0.4823	1.7195	0.2640	1.7506	0.5377
34	9	0.0498	0.7906	1.7139	0.7083	1.3001	0.2326
34	10	0.0864	0.5886	2.4700	0.5667	0.5384	0.1734

The 1st line of the file will be column labels for each column. Each subsequent line will be the Group and element number then each component stress for that element.

If the step argument is left blank or set to -1 the Maximum values of each component will be written to the table. This Maximum is the absolute maximum for the component.

BINFRAMEOUT Command

BINFRAMEOUT db>,<frame>,<TS>,[Split],<dir>

Create ASCII frame files from binary databases in the UI frame format. This command will write a frame(s) for a single database. The user can request the frame by either integer order in the database or by time value.

- •db database used fro frame creation
 - •THS Stress Database
 - •DISP Displacement Database
 - •ACC Acceleration Database

•frame - frame number or frame time. If using the command to create a frame of the maximum components use -1 for frame num and TS < = 0

- •TS time step for the database if using frame time
 - •if TS < = 0 use integer frame number
 - •if TS > 0 use frame time
- •Split split the frame file into to separate files
 - •0 no frame split
 - •1 frame split separate translation and rotations

•dir - directory where the frame file will be written

UI Extracting STRESS Maximum Element Outputs

LOADTHSDB,C:\ACSV300\DEMO_PROBLEMS\DEMO9\XYZ_Analysis\STRESS\Combined\THS\AB_SHEAR_NL_STRESS.BIN Database read took 3.906000 Seconds

LOADVAR,elist,C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\element_output_list.txt

Variable Loaded Sucessfully from file

BINSTRTBL, 34, elist, 1, C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS_MAX.txt

Table File : C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS_MAX.txt written

Gr. El	em.	SXX	SYY	TXY	MXX	MYY	MXY
34	1	0.0619	1.3769	1.7051	0.2896	0.2343	0.3228
34	2	0.0092	1.6048	2.6930	0.2101	0.8928	0.1681
34	3	0.1953	1.0696	2.6461	0.5233	0.8652	0.1771
34	4	0.1861	0.7625	2.1855	0.2927	1.1031	0.1119
34	5	0.0589	0.8005	4.2785	0.5619	1.8940	0.0472
34	6	0.0849	0.7012	4.9323	0.8285	1.8190	0.1373
34	7	0.0262	0.6604	3.4275	0.6116	0.2215	0.4655
34	8	0.0329	0.4823	1.7195	0.2640	1.7506	0.5377
34	9	0.0498	0.7906	1.7139	0.7083	1.3001	0.2326
34	10	0.0864	0.5886	2.4700	0.5667	0.5384	0.1734

2021 Copyright of Ghiocel Predictive

Technologies, Inc.. All Rights Reserved. 5-Day

ACS SASSI Introductory Training Notes

UI Plot Nodal Contours Using Binary Databases

UI Processing for Structural Animations Using Text Frames or Binary Databases

Plotting STRESS History of Max Element Outputs

INPUT FILE REACHED EOF, INPUT SWITCHED TO KEYBOARD

LOADTHSDB,C:\ACSV300\DEMO_PROBLEMS\DEMO9\XYZ_Analysis\STRESS\Combined\THS\AB_SHEAR_NL_STRESS.BIN

Database read took 7.110000 Seconds

LOADVAR,elist,C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\element_output_list.txt

Variable Loaded Sucessfully from file

MAXDBFRAME, THS, C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS\Combined\THS\Max_Frame_Contour

Max Frame added user interface animation database

THSDBANI,C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS\Combined\THS\AII_Frame_Contour

1-10649

	SASSEUS	er Ini	- /	
	5/(55/05		Load Frame Data ×	
Model	File Plot	Mc	Select From Database	
Model Cuts	>	H (A 1001	Description Animation Dire Type Fra Stress Max Frame for C:\ACSV300\De Ele 1 Stress Contours for AB C:\ACSV300\De Ele 106 Stress Max Frame for C:\ACSV200\De Ele 1	500.00000 >=
Spectrum IFU-IFI		ry		
Time History		****	Remove Animation Edit Description	375.00000
Soil Layers		TEN I	Animation Control	
Soil Properties		pe Il	Frame Selection	
Non Uniform Soil Fie	ld	c	Start 1 Erld 10649 Stride 1	250.00000
Process Animation		3	Data Column 5 Min 0.000000 Max 500 Use Defined Range	
Bubble			Ok Cancel	125.00000
Vector				
Contour	>		Nodal	0.00000 <=
Deformed Shape		I	lement 2021 Copyright of Ghiocel Predictive	
			Technologies, Inc All Rights Reserved. 5-Day	130
			ACS SASSI Introductory Training Notes	

Post-Processing SSI Responses Using Binary Databases Described in Detail in Demo 13

* Plotting and Saving Results as Text Files from Binary Databases * Nodal Accelerations (MOTION Module)

ACCDBANI,@PATH[1]\Combined\ACC,Demo 13 Acceleration Time History MAXDBFRAME,ACC,@PATH[1]\Combined\ACC_Max

* Nodal Relative Displacements (RELDISP Module) DISPDBANI,@PATH[1]\Combined\THD,Demo 13 Relative Displacement MAXDBFRAME,DISP,@PATH[1]\Combined\THD_Max

* Element Stresses/Forces (STRESS Module) THSDBANI,@PATH[1]\Combined\STRESS,Demo 13 Stress Contour MAXDBFRAME,THS,@PATH[1]\Combined\Stress_Max

* Saving Binary Database Results to Text Files VAR,OUTNODES,63,137,205,219,253,271 VAR,OUTELEM,1,2,3,4,5,6,7,8,9,10,11,12,13,14

* Accelerations (MOTION Module) ACCDBTHFILE,OUTNODES,1,@PATH[1]\COMBINED BINFRAMEOUT,ACC,-1,0,0,@PATH[1]\Combined BINFRAMEOUT,ACC,1000,0,0,@PATH[1]\Combined BINFRAMEOUT,ACC,5.5,0.005,0,@PATH[1]\Combined

* Displacement (RELDISP Module) DISPDBTHFILE,OUTNODES,1,@PATH[1]\COMBINED

* Stress (STRESS Module)

THSDBTHFILE,19,OUTELEM,1,@PATH[1]\Combined

BINSTRTBL,19,OUTELEM,-1,@PATH[1]\Combined\Group19_Max_Stress.txt

 ${\tt BINSTRTBL, 19, OUTELEM, 1000, @PATH[1] \ Combined \ Group 19_tstep_1000_Stress.txt}$

A list of nodes or elements must be assigned to an ACS SASSI UI variable when saving specific nodes or elements to text files. These are not required when saving a frame containing all nodes or elements

The output direction is controlled by this argument, so 1 = X, 2 = Y, and 3 = Z

Use **ACC**, **DISP**, or **THS** for this argument in the BINFRAMEOUT command to save frames for acceleration, displacement, or stress, respectively

The output group number and stress component is controlled by this arguments, respectively

Coordinate Transformation for Forces and Moments in Shell Elements – Details in Demo 14

To apply coordinate transformations to element forces and moments, the requested elements must first be added to a (section cut) <u>submodel</u> in the ACS SASSI UI.

This submodeling operation conveniently allows for multiple walls or floors to be stored independently without having to redefine any grouping currently present in the model, as well as plotted separately to visualize the elements selected to apply coordinate transformation to.

Coordinate Transformation Commands

For Planar Geometry - CTRVEC,10,1,0,@PATH[1],MAX For Cylindrical Geometry - CTRCCV,2,@PATH[1],MAX

Some Useful Commands for Selecting Elements to

CutAdd,<cut num>,<group num>,<elem 1>, ... <elem N> CutAdd,<cut num>,<group num>,RANGE,<elem start>,[elem end], [stride] CutVol,<cutnum>,[Xmin],[Xmax],[Ymin],[Ymax],[Zmin],[Zmax] SLICE,<cutnum>,<pointx>,<pointy>,<pointz>,<normalx>,<normaly>,<normalz>

Defines a vector for the X-axis of the coordinate system to transform to. CTRCCV does not require this argument, as it is calculated internally for the cylindrical surface

10. Automatic Post-Processing Using Multilevel UI Command Macros

Post-Processing Programming Commands

Programming Commands

Command	Action	Description
ADDRND	Append random numbers to the end of a variable	Section 9.14.1
CD	Change Current working directory	Section 9.14.2
FOREACH	Loop on a variable	Section 9.14.3
LOADMACRO	Load a Macro pre file	Section 9.14.4
LOADVAR	Load a ∨ariable from a file	Section 9.14.5
MACRO	Use a Macro	Section 9.14.6
MACROLIST	Show all macro names currently in ACS SASSI User Interface memory	Section 9.14.7
MKDIR	Make a new directory	Section 9.14.8
REDUCESET	Sort variable contents and remove duplicate entries	Section 9.14.9
RND	Fills a variable with a random number	Section 9.14.10
RNDSEED	Seeds or reseeds random number generator	Section 9.14.11
SETVAR	Set Variables	Section 9.14.12
SHOWVAR	Show contents of a variable	Section 9.14.13
VAR	Create a variable	Section 9.14.14
VARLIST	Show all variables in ACS SASSI UI memory	Section 9.14.15

UI Macros for Post-Processing SSI Results

- Perform fast repeated UI operations easily
- Post-Process SSI results (SRSS, averaging, time superposition by algebraic summation, etc.)
- Identify missing frequencies based on ATF or STF results, and build list of new frequencies to be added
- Automate the running of SSI Analysis and post-processing results for coherent and incoherent seismic inputs

See also Demo 3

Macro Basic Functions

- Macros are loaded into the UI with the LOADMACRO command
- Macros are called with the MACRO command
- Input arguments for a macro are written in the form \$n\$, where n is the number of the argument, i.e. \$1\$ is the first input argument, \$2\$ is the second, etc.
 - In the example below, the macro call would look like macro,srss,.\XDIR\00001TR_X01.rs,.\YDIR\00001TR_X01.rs,.\Z DIR\00001TR_X01.rs,.\SRSS\00001TR_X01_SRSS.rs
 - From this example, the first argument is the X-Direction .rs file, the second is the Y-Direction .rs file, the third is the Z-Direction .rs file, and the last argument is the file to save the computed

Defining Variables for Efficient Post-Processing

- Defined in the ACS SASSI UI using the VAR and LOADVAR commands
- Can be viewed with VARLIST and SHOWVAR commands
- Reference in the ACS SASSI UI by the defined name preceded by @, i.e. @variablename[1]
 - The number within the brackets identifies the index number to use to access the values stored in a variable i.e. @name[1] for the first value, @name[2] for the second, etc.

FOREACH Command for Building Variable Loops

- The FOREACH command is extremely useful for post-processing SSI results for many nodes or elements
- FOREACH, variable,<command to be executed>
- The looped variable should appear in the command to be executed in the form of variable[#]
 - The [#] indicates that the specified variable is to be looped on
 - Only one variable can be looped on in a single FOREACH command
- When used with the MACRO command, the execution of operations such as computing SRSS for spectra or summation of time histories can be looped through for a list of nodes or elements

Nested Macros for Efficient Post-Processing

Macros can be nested to easily perform repeated operations. This example calls the nesting macro to pass file name information to the macro performing the SRSS operation. The nesting macro is passed file name information from the top level .pre file, looping through nodes to build file names to pass to the nesting macro with the FOREACH command.

Top Level .pre File Calling Nesting Macro * Define Variables mdl,temp,<work folder>\Coherent\Post-Processing var,path,. loadvar,nodes,@Path[1]\Nodes.txt * Load Macros loadmacro,srss,SRSS-macro.pre loadmacro,nestSRSS,Nested-SRSS.pre * Combine Results foreach,nodes,macro,nestSRSS,@nodes[#],01,X,@path[1] Macro Calling SRSS Macro (Nested-SRSS.pre) * NEST SRSS macro,srss,\$4\$\XDIR\\$1\$TR_\$3\$\$2\$.rs,\$4\$\YDIR\\$1\$TR_\$3\$\$2\$.rs, \$4\$\ZDIR\\$1\$TR \$3\$\$2\$.rs.\$4\$\Combined\ISRS\\$1\$TR \$3\$\$2\$.RS Macro to Perform SRSS Calculation (SRSS-macro.pre) * SRSS MACRO READSPEC,\$1\$,1,1

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

READSPEC, \$2\$, 1, 2 READSPEC, \$3\$, 1, 3

WRITESPEC.\$4\$.4

139

SRSS.4.1.2.3

Example of UI Macros for Adding Acceleration Histories

Macros can be nested to easily perform repeated operations. This example calls the nesting macro to pass file name information to the macro performing the ADDITION operation.

The nesting macro is passed file name information from the top level .pre file, looping through nodes to build file names to pass to the nesting macro with the FOREACH command.

Iop Level .pre File Calling Nesting Macro	
* Define Variables mdl,temp, <work folder="">\Coherent\Post-Processing</work>	Nodes.txt
var,path,. loadvar,nodes,@Path[1]\Nodes.txt	09201
* Load Macros loadmacro,ADD,ADD-Macro.pre loadmacro.NESTADD.Nested-ADD.pre	09203 09204 09205 09206
* Combine Results foreach,nodes,macro,nestADD,@nodes[#],X,@path[1]	09207 09208 09209 09210
NESTADD Macro Calling ADD Macro (Nested-ADD.pre) * NESTADD Macro macro.ADD.\$3\$\XDIR\\$1\$TR_\$2\$ acc.\$3\$\YDIR\\$1\$TR_\$2\$.rs.\$3\$\ZDI	09211 09212 09213 09214 09215
R\\$1\$TR_\$2\$.acc,\$4\$\Combined\ISRS\\$1\$TR_\$2\$.acc	09233 09960
ADD Macro for ADDITION Calculations (ADD-Macro.p * ADD Macro READTH,\$1\$,0,1 READTH,\$2\$,0,2 READTH,\$3\$,0,3 ADDITION,4,1,2,3 WRITETH,\$4\$,4	re)

Combination of ISRS, ACC, and THD Files for Incoherent SSI Analysis (Combine_Results.pre)

* Combine_Results.pre

* Macro to run SRSS and Average for ISRS, and time history combination for * THD, ACC, and THS files

* Define Variables

mdl,temp,<work directory>\Incoherent\Post-Processing var,path,.

loadvar,xnodes,@Path[1]\XDIR_Nodes.txt loadvar,ynodes,@Path[1]\YDIR_Nodes.txt loadvar,znodes,@Path[1]\ZDIR_Nodes.txt loadvar,samples,@Path[1]\Samples.txt

* Load Macros loadmacro,srss,SRSS-macro.pre loadmacro,add,Addition-macro.pre loadmacro,mean,Average-macro.pre

loadmacro,xnestsrssfor,Nested-SRSS-foreach-X.pre loadmacro,ynestsrssfor,Nested-SRSS-foreach-Y.pre loadmacro,znestsrssfor,Nested-SRSS-foreach-Z.pre

loadmacro,xnestaddaccfor,Nested-Add-ACC-foreach-X.pre loadmacro,ynestaddaccfor,Nested-Add-ACC-foreach-Y.pre loadmacro,znestaddaccfor,Nested-Add-ACC-foreach-Z.pre loadmacro,xnestaddthdfor,Nested-Add-THD-foreach-X.pre loadmacro,ynestaddthdfor,Nested-Add-THD-foreach-Y.pre loadmacro,znestaddthdfor,Nested-Add-THD-foreach-Z.pre

loadmacro,nestSRSS,Nested-SRSS.pre loadmacro,nestAddACC,Nested-Add-ACC.pre loadmacro,nestAddTHD,Nested-Add-THD.pre

See Demo 3

* Macro continued

* Create Combined Folders for Each Sample foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined\ISRS foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined\THD foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined\ACC

* Calculate SRSS for ISRS for Each Sample foreach,samples,macro,xnestsrssfor,@samples[#] foreach,samples,macro,ynestsrssfor,@samples[#] foreach,samples,macro,znestsrssfor,@samples[#]

* Calculate Sum for ACC for Each Sample foreach,samples,macro,xnestaddaccfor,@samples[#] foreach,samples,macro,ynestaddaccfor,@samples[#] foreach,samples,macro,znestaddaccfor,@samples[#]

Combination of ISRS, ACC, and THD Files for Incoherent SSI Analysis (Combine_Results.pre)

* Calculate Sum for THD for Each Sample foreach,samples,macro,xnestaddthdfor,@samples[#] foreach,samples,macro,ynestaddthdfor,@samples[#] foreach,samples,macro,znestaddthdfor,@samples[#]

* Calculate Mean for Each Node mkdir,.\Mean foreach,xnodes,macro,mean,@path[1],@xnodes[#],X,01 foreach,ynodes,macro,mean,@path[1],@ynodes[#],Y,01 foreach,znodes,macro,mean,@path[1],@znodes[#],Z,01

Macros Are Defined as .pre Input Files

* Addition-Macro pre for Add				
Time History for 3 Directions READTH, \$1\$,0,1 READTH, \$2\$,0,2 READTH, \$3\$,0,3	<pre>* Nested-SRSS.pre macro,srss,\$4\$\XDIR\\$1\$TR ZDIR\\$1\$TR_\$3\$\$2\$.rs,\$4\$\C</pre>	\$3\$\$2\$.rs,\$4\$\YDIF ombined\ISRS\\$1\$TF	R\\$1\$TR_\$3\$\$2\$.rs,\$4\$\ R_\$3\$\$2\$.RS	
ADDITION,4,1,2,3 WRITETH,\$4\$,4	* Nested-SRSS-foreach-X.pr	e RSS.@xnodes[#].01.	X.@path[1]\Sample \$1\$	
* SRSS-Macro.pre for SRSS			m, cpach[1] (camp10_+1+	
READSPEC, \$1\$,1,1 READSPEC, \$2\$,1,2 READSPEC, \$3\$,1,3	<pre>* Nested-Add-ACC-foreach-X.pre foreach,xnodes,macro,nestAddACC,@xnodes[#],X,@path[1]\Sample \$1\$</pre>			
SRSS,4,1,2,3 WRITESPEC,\$4\$,4				
* Average-Macro.pre for Average READSPEC,\$1\$\Sample_1\Combined\ READSPEC,\$1\$\Sample_2\Combined\ READSPEC,\$1\$\Sample_3\Combined\	for 20 Samples ISRS\\$2\$TR_\$3\$\$4\$.RS,1,1 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,2 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,3			
READSPEC, \$1\$\Sample_4\Combined\ READSPEC, \$1\$\Sample_5\Combined\ READSPEC, \$1\$\Sample_6\Combined\ READSPEC, \$1\$\Sample_7\Combined\	ISRS\\$2\$TR_\$3\$\$4\$.RS,1,4 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,5 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,6 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,6			
READSPEC, \$1\$\Sample_8\Combined\ READSPEC, \$1\$\Sample_9\Combined\ READSPEC, \$1\$\Sample_10\Combined\ READSPEC, \$1\$\Sample_11\Combined\ READSPEC, \$1\$\Sample_12\Combined\ READSPEC, \$1\$\Sample_13\Combined\ READSPEC, \$1\$\Sample_14\Combined\ READSPEC, \$1\$\Sample_15\Combined\ READSPEC, \$1\$\Sample_15\Combined\	ISRS\\$2\$TR_\$3\$\$4\$.RS,1,8 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,9 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,10 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,11 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,11 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,12 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,13 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,14 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,15	The THS, THD, a nested macros fo structure to the N and Nested-SRS	Ind ACC addition Ilow a similar Iested-SRSS.pre S-foreach-X.pre	
READSPEC, \$1\$\Sample_16\Combined READSPEC, \$1\$\Sample_17\Combined READSPEC, \$1\$\Sample_18\Combined READSPEC, \$1\$\Sample_19\Combined READSPEC, \$1\$\Sample_20\Combined AVERAGE, 21, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, WRITESPEC, \$1\$\Mean\\$2\$TR_\$3\$\$4\$	\1SRS\\$2\$TR_\$3\$\$4\$.RS,1,16 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,17 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,18 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,19 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,20 ,11,12,13,14,15,16,17,18,19,20 .RS,21		143	

Combination of THS Files for Incoherent Analysis

* Define Variables mdl,temp,<work directory>\Post-Processing var,path,. loadvar,thslist,@path[1]\ths_list.txt loadvar,samples,@Path[1]\Samples.txt

* Load Macros loadmacro,add,Addition-macro.pre loadmacro,nestaddthsfor,Nested-Add-THS-foreach.pre loadmacro,nestAddTHS,Nested-Add-THS.pre

* Create Combined Folders for Each Sample
foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined
foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined\THS

* Calculate Sum for THS for Each Sample foreach, samples, macro, nestaddthsfor, @samples[#]

* Addition-Macro.pre for Add Time History for 3 Directions READTH,\$1\$,0,1 READTH,\$2\$,0,2 READTH,\$3\$,0,3 ADDITION,4,1,2,3 WRITETH,\$4\$,4

* Nested-Add-THS-foreach.pre
foreach,thslist,macro,nestAddTHS,@path[1]\Sample_\$1\$,@thslist[#]

* Nested-Add-THS.pre
macro,add,\$1\$\XDIR\\$2\$,\$1\$\YDIR\\$2\$,\$1\$\ZDIR\\$2\$,\$1\$\Combined\THS\\$2\$

* Nested-Add-THS.pre

macro,add,1\XDIR\2,1\YDIR\2,1\ZDIR\2,1\Combined\THS\2

THS_list.txt

BEAMS_002_00001_FXI.THS BEAMS_002_00001_FXJ.THS BEAMS_002_00001_FYJ.THS BEAMS_002_00001_FYJ.THS BEAMS_002_00001_FZI.THS BEAMS_002_00001_FZJ.THS BEAMS_002_00001_MXI.THS BEAMS_002_00001_MYJ.THS BEAMS_002_00001_MYJ.THS BEAMS_002_00001_MZJ.THS BEAMS_002_00001_MZJ.THS BEAMS_002_00001_MZJ.THS BEAMS_002_00001_MZJ.THS BEAMS_002_00001_MZJ.THS BEAMS_002_00001_MZJ.THS

BEAMS_011_00095_FXJ.THS BEAMS_011_00095_FYJ.THS BEAMS_011_00095_FYJ.THS BEAMS_011_00095_FZJ.THS BEAMS_011_00095_FZJ.THS BEAMS_011_00095_MXI.THS BEAMS_011_00095_MXJ.THS BEAMS_011_00095_MYJ.THS BEAMS_011_00095_MZJ.THS BEAMS_011_00095_MZJ.THS
Variables Loaded in Combine_Results.pre

XDIR_Nodes.txt	YDIR_Nodes.txt	ZDIR_Nodes.txt	Samples.txt
09201	09201	09201	1
09202	09202	09202	2
09203	09203	09203	3
09204	09204	09204	4
09205	09205	09205	5
09206	09206	09206	6
09207	09207	09207	7
09208	09208	09208	8
09209	09209	09209	9
09210	09210	09210	10
09211	09211	09211	11
09212	09212	09212	12
09213	09213	09213	13
09214	09214	09214	14
09215	09215	09215	15
09233	09233	09233	16
09960	09960	09301	17
		09302	18
		09303	19
		09304	20
		09305	
		09306	
		09307	
		09308	
		09309	
		09310	
		09311	
		09312	

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Macro for Finding Additional Frequencies for Improving ATF and STF Interpolation Errors

* Modify path var to location of the demo directory var,path,C:ACSV300\Demo Problems\demo3\ var,dirs,@path[1]\TFU-TFI mdl,,@path[1] loadvar, TF, tflist.txt mdl,,@dirs[1] var, FREQ foreach, TF, CRITFREQ, 90, 50, @TF[#], FREQ reduceset, FREQ, FLOAT showvar, FREQ

11. Section-Cuts Capabilities for Shell and Solid Elements

Section-Cut Related Commands

Cut & Submodeling Commands

	Command	Action	Description
	CSECT	create a cross sectional model	Section 9.9.1
	CUT2SUB	Transfer Elements in a cut to another model	Section 9.9.2
	CUTADD	Add elements from a group to a cut	Section 9.9.3
	CUTCLR	Clear a cut in memory	Section 9.9.4
	CUTRMV	Remove elements from a cut	Section 9.9.5
×	CUTVOL	Add elements in a volume to a cut	Section 9.9.6
	EXTRACTEXCAV	Make a submodel of the excavation volume	Section 9.9.7
1	SLICE	Add elements to a cut that lie along a plane	Section 9.9.8
	SPLITGROUP	Split a group into 2 different groups	Section 9.9.9
	TRANELEM	Transfer a list of element in the current model to another model	Section 9.9.10
	TRANVOL	Transfer all elements in a volume to another model	Section 9.9.11

Calculation Section-Cut UI Commands

Calculation Commands

Command	Action	Description
CALCC	Calculate the center of area for the model	Section 9.12.1
CALCSECTHIST	Calculate the stress history of a cross section based on multiple files	Section 9.12.2
CALCSECTHISTDB	Calculate the stress history of a cross section using the data from the binary stress database	Section 9.12.3
CALCM	Calculate the mass of the object	Section 9.12.4
CALCMOI	Calculate the moment of inertia	Section 9.12.5
CALCPAR	Calculate all six response quantities for a cross-section	Section 9.12.6
READSTR	Read the .ess stress file and apply to the model	Section 9.12.7
SECDATAOPT	Set the output request in stress for section cut data	Section 9.12.8
SHEAR	Calculate ultimate shear for a nonlinear panel	Section 9.12.9

Section-Cuts Using ESTRESS Text Frames

The UI Section-Cut capability has two options:

1) Uses *a single frame of stress data* (single .ess frame file) to compute the section-cut forces and moments on a cross-section at a specific time step.

2) Uses a *multiple frames of stress data* (all .ess frame files) to compute the full time-history of the section-cut forces and moments.

Demo 8

Section-Cut Submodel Models

Section-Cut for Single ESTRESS Stress Frame

* Read element center stress frame READSTR, estress_02617.ess, C:\DEMOS\DEMO8\ESS_STRESS

*For the 1st section-cut in the SUBMODELER command line, type

CUTVOL,1,132.4

*The blank arguments to this command are interpreted as the respective *minimum or maximum extent of the building model geometry. This cut volume *is saved to cut #1.

CSECT,1,1,0,0,15.3,0,0,1

*This creates a cross-section model from cut #1 through point (0.0, 0.0, 15.3), *with a cross-section plane normal unit vector of (0.0, 0.0, 1.0). The cut cross-*section is saved to model #1

CALCPAR, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0" in the command SUBMODELER window to calculate the cross-section parameters, seismic forces and moments

Section-Cut Results

Model Parameters Centroid X =145.443 Y =-149.003 Z = 15.8 Area = 342 Ixx = 305990 Iyy = 5183.71 Izz = 311174 Fx = -28.0657 Fy = 11456.9 Fz = 109.184 Mx = -323054 My = 124.862 Mz = 97618.6

NOTE: If the element stress frame data is not read properly or not input, the force and moment parameters will be set to "0".

CALCPAR Command Script (.pre) Example

```
actm,0
* Load Model and stress user must change path
inp,Demo8.pre,C:\DEMO PROBLEMS\DEMO8\
readstr, estress 02617.ess, C:\DEMO PROBLEMS\DEMO8\ESS STRESS
*define structual components to be cut
cutvol,1,132.4
cutvol,2,,,-120
* create cross sectional models of selected components along a plane
csect, 1, 1, 0, 0, 15.3, 0, 0, 1
csect, 2, 2, 0, 0, -1, 0, 0, 1
* calculate parameters for each of the cross sections
actm,1
calcpar,0,0,1,1,0,0,1
actm,2
calcpar,0,0,1,1,0,0,1
* output cross sections for visualization with PREP(optional)
actm,0
cut2sub,1,3
cut2sub,2,4
actm,3
write,XSub.pre,C:\DEMO PROBLEMS\DEMO8\
actm,4
* write, YSub.pre, C:\DEMO PROBLEMS\DEMO8\
```

CALCSECTHIST Command Batch Input

1 401 1 C:\DEMO_PROBLEMS\DEMO8\ESS_FRAMES\ estress_02401.ess estress_02402.ess estress_02403.ess estress_02404.ess estress_02405.ess estress_02406.ess estress_02406.ess estress_02407.ess estress_02408.ess estress_02409.ess estress_02410.ess

estress_02795.ess estress_02796.ess estress_02797.ess estress_02798.ess estress_02799.ess estress_02800.ess estress_02801.ess Batch input file has a similar configuration with the animation files, .thani or .rsani.

Section-Cut for Time History ESTRESS Frames

CALCSECTHIST Command Script (.pre) Example

*

*Batch .pre input file of section cut for multiple frame data *

```
actm,0
*Replace Directory Path
inp,demo8.pre,C:\DEMO_PROBLEMS\DEMO8\
*
```

```
* Define structure component to be cut slice, 1, 0.0, 0.0, -12.0317, 0.0, 0.0, 1.0
```

* Cut the selected structure component using cutting plane * Calculate the parameters on it, and output to given file Calcsecthist,C:\DEMO_PROBLEMS\DEMO8\estr_frame_files.lst,1,0.0,0.0,-12.0317,0.0,0.0,1.0,1.0,0.0,0.0,1,.005,C:\DEMO_PROBLEMS\DEMO8\frc_ mmt_on_cut02.txt

CALCSECTHIST Results

C:\DEMO_PROBLEMS\DEMO8\frc_mmt_on_cut02.txt file:

0.005 -343.777 12065.2 0.229168 -800746 -21965.1 581499 0.01 -268.056 11539.5 0.300395 -779248 -16700.6 600032 0.015 -189.851 10623.5 0.294853 -733816 -10990.5 593052 0.02 -114.229 9320.15 0.227868 -665089 -5282.46 558887 0.025 -44.3936 7645.78 0.144148 -573880 2.20757 497620 0.03 18.0423 5647.78 0.0908182 -461901 4514.26 411756 0.035 72.3351 3391.01 0.0894927 -331126 8011.35 305474 0.04 117.752 967.345 0.124164 -184604 10378.6 184558

1.97 -676.309 9226 0.149393 -698463 -42784.3 401711 1.975 -631.161 8753.78 0.143451 -677218 -40340.6 396997 1.98 -553.34 7862.11 0.158777 -627501 -35783.4 376102 1.985 -450.432 6584.62 0.16545 -550419 -29410.2 339107 1.99 -330.715 4981.56 0.133199 -448530 -21628.8 287164 1.995 -202.2 3116.14 0.0512961 -325035 -12940.6 221694 2 -72.0058 1058.89 -0.0630017 -184306 -3907.81 144578 2.005 53.7767 -1132.73 -0.172686 -30951.4 4886.85 57394.5

CALCSECTHISTDB Command Using STRESS Binary Database

CALCSECTHISTDB,<cutnum>,<px>,<py>,<pz>,<nx>,<ny>,<nz>,<rz>,<rsys>,<ts>,[start],[end],[Stride],<outfile>

Calculate the Stress history from a cross section using the database currently loaded into User Interface memory. This command has the functionality as CALCSECTHIST does for ASCII generate stress data.

The output of this command is a 7-column text table where the 1st column is either the simulation time or step number if it is set to 0. The rest of the six columns are the stress components of the cross section. The final line of the file will have the word MAX in the1st column. This line will contain the absolute maximum for each component in the table, but the sign of the stress will be maintained on this line.

Before using this command, the stress database for the calculation must be loaded into the UI. The associated model must be loaded into memory and set as the active model. The cut input by the user *cutnum* must be defined before this command.

Section-Cuts w/ Section_Cuts_for_BBC (Opt. NON)

Use UI Section-cut commands to split the 3DFEM model in wall submodels (including several shell groups).

The Section_Cuts_for_BBC module is used for computing automatic sectioncuts for seismic and gravity loads for each submodel for all floor levels

12. UI Parametric Language Commands for Building SSI FE Models

Building A SSI Analysis Models

Step 1: Define Dynamic Inputs (Seismic Motion or Forces)

Step 2: Define Soil Layering

- Step 3: Define Structure and Near Field Zone Using FE Modeling
- Step 4: Define Seismic Motion Spatial Incoherency
- Step 5: Select SSI Analysis Options (Assumptions, Methods, Parameters)
- Step 6: Manage SSI Analysis Runs

Step 7: Post Processing for Extracting Results

SSI Model Building Recommendations

The user manuals contain a large number of comments on various SSI modeling aspects.

Top-level recommendations of node and element numbering:

- Soil layering to be numbered from ground surface to baserock
- Excavation volume nodes to be numbered from baserock to ground surface
- Interaction nodes defined in ascending number order
- Excavation volume layers to be numbered from ground surface to baserock
- Excavation volume elements to be numbered from ground surface to baserock; each layer of elements to be a separate group for post-processing.

We also recommend always check the consistency of your soil layer or material element assignments for the soil excavation volume and the structural embedment part by revising the HOUSE output (modelname_HOUSE.out).

For technical support please contact us acs.sassi@ghiocel-tech.com.

Node Commands

Node Commands

Command	Action	Description
D	Sets boundary conditions.	Section 9.3.1
FILL	Generates a node line.	Section 9.3.2
INT	Sets interaction, interface, intermediate, or internal nodes.	Section 9.3.3
INTLIST	Lists interaction, interface, intermediate, or internal nodes.	Section 9.3.4
LMO∀E	Generates a node list by translation.	Section 9.3.5
Ν	Defines a node.	Section 9.3.6
NDEL	Deletes nodes.	Section 9.3.7
NGEN	Generates nodes by copying a node pattern.	Section 9.3.8
NLIST	Lists nodes.	Section 9.3.9
NMED	Defines a node with average coordinates.	Section 9.3.10
NMOVE	Generates a node list by scaling.	Section 9.3.11
NSCALE	Scales nodal coordinates.	Section 9.3.12

Element Commands

Element Commands

Command	Action	Description
DELL	Deletes soil layers.	Section 9.4.1
DELM	Deletes materials.	Section 9.4.2
DELR	Deletes real properties.	Section 9.4.3
DELSC	Deletes spring properties.	Section 9.4.4
E	Defines an element.	Section 9.4.5
ECOMPR	Compresses elements.	Section 9.4.6
EDEL	Deletes elements.	Section 9.4.7
EGEN	Generates elements by translation	Section 9.4.8
EINT	Sets integration order for SOLID elements.	Section 9.4.9
ELIST	Lists elements.	Section 9.4.10
ETYPE	Sets type for SOLID, PLANE, SHELL/TSHELL elements.	Section 9.4.11
GDEL	Deletes groups.	Section 9.4.12
GLIST	Lists groups.	Section 9.4.13
GROUP	Creates or activates a group.	Section 9.4.14
GTIT	Sets group title	Section 9.4.15
HVDCEDEL	Deletes H∨D constant set	Section 9.4.16
HVDCELST	Lists the HVD constants	Section 9.4.17
HVDCEQ	Define H∨D material constants	Section 9.4.18
кі	Defines end release code in node I of BEAMS elements.	Section 9.4.19
KJ	Defines end release code in node J of BEAMS elements.	Section 9.4.20

Element Commands (cont.)

	L	Defines a soil layer.	Section 9.4.21
	LLIST	Lists soil layers.	Section 9.4.22
	М	Defines a material.	Section 9.4.23
	MACT	Sets active material / soil layer index.	Section 9.4.24
	MLIST	Lists materials.	Section 9.4.25
	MSET	Sets element material / soil layer index.	Section 9.4.26
	MXDEL	Delete matrix properties.	Section 9.4.27
	MXI	Set terms for matrix property - imaginary part of stiffness matrix.	Section 9.4.28
	MXLIST	List matrix property.	Section 9.4.29
	MXM	Set terms for matrix property - mass / weight matrix.	Section 9.4.30
	MXR	Set terms for matrix property - real part of stiffness	Section 9.4.31
	RACT	Sets active real / spring / matrix property index.	Section 9.4.33
	RLIST	Lists real properties.	Section 9.4.34
	RSET	Sets element real / spring / matrix property index	Section 9.4.35
	SC	Defines a spring property.	Section 9.4.36
-	SCLIST	Lists spring properties.	Section 9.4.37
	тніск	Sets thickness for SHELL elements.	Section 9.4.38
			· · ·

NGEN Command for Generating New Nodes

• **NGEN**, *ITIME*, *INC*, *NODE1*, *NODE2*, *NINC*, *DX*, *DY*, *DZ* Generates additional nodes from a pattern of nodes.

ITIME, INC

Do this generation operation a total of *ITIME* times, incrementing all nodes in the given pattern by *INC* each time after the first. *ITIME* must be > 1 for generation to occur.

NODE1, NODE2, NINC

Generate nodes from the pattern of nodes beginning with NODE1 to NODE2 in steps of NINC

DX, DY, DZ

Node location increments

N, 1, 0.0, 0.0, 0.0

EGEN Command for Generating New Elements

• EGEN, ITIME, NINC, IEL1, IEL2, IEINC

Generates elements from an existing pattern.

ITIME, NINC

Do this generation operation a total of *ITIMEs*, incrementing all nodes in the given pattern by *NINC* each time after the first.

IEL1, IEL2, IEINC

Generate elements from selected pattern beginning with *IEL1* to *IEL2* in steps of *IEINC*

MINC

Increment material number of all elements in the given pattern by *MINC* each time after the first.

170

Group Type Commands

Group Type	Element Data	Instruction
SOLID	material / soil layer index	MSET
SOLID	element type	ETYPE
	material index	MSET
REAMS	real property index	RSET
DEAIVIS	I node release code	KI
	J node release code	KJ
	material index	MSET
SHELL/	thickness	THICK
TOTILLE	element type	ETYPE
	material / soil layer index	MSET
FLANE	element type	ETYPE
SPRING	spring property index	RSET
GENERAL	matrix property index	RSET
H∨D	HVD property constants defined by HVDCEQ	MSET

WARNING: All the elements in the system must be grouped separately according to their type. Gaps in element numbering are not allowed. Use the ECOMPR command to compress groups with element gaps.

Nodal Load Commands

Load Commands

Command	Action	Description
F	Defines a force.	Section 9.5.1
FDEL	Deletes forces.	Section 9.5.2
FLIST	Lists forces.	Section 9.5.3
FSCALE	Scales forces.	Section 9.5.4
MM	Defines a moment.	Section 9.5.5
MMDEL	Deletes moments.	Section 9.5.6
MMLIST	Lists moments.	Section 9.5.7
MR	Defines a rotational mass.	Section 9.5.8
MRGEN	Generates rotational masses by translation.	Section 9.5.9
MRDEL	Deletes rotational masses.	Section 9.5.10
MRSCALE	Scales rotational masses.	Section 9.5.11
MSCALE	Scales moments.	Section 9.5.12
MT	Defines a translational mass.	Section 9.5.13
MTDEL	Deletes translational masses.	Section 9.5.14
MTGEN	Generate translational masses by translation.	Section 9.5.15
MTLIST	Lists translational and rotational masses.	Section 9.5.16
MTSCALE	Scales translational masses.	Section 9.5.17
MUNITS	Sets units for translational and rotational masses.	Section 9.5.18

Example of ACS SASSSI .Pre Input File for Simple Embedded Cylinder Model (Solid Elements Only)

.PRE File Structure

* THIS FILE WAS WRITTEN BY THE ACS SASSI PREPROCESSOR Comment lines starts by * * To reload model type INP, <this file=""> in PREP</this>			
TIT, EMBEDDED CYLINDER MODEL			
* Nodes N,1,0,0,-70 N,2,17.5,0,-70 N,3,12.374,12.374,-70 N,5,-12.374,12.374,-70 N,6,-17.5,0,-70 N,7,-12.374,-12.374,-70	174		

Input constrained displacement by "D" command:

* Boundary Conditions D,1,414,1,1,ROTX,ROTY,ROTZ

* Material Table M,1,1e+012,0.2,0,0,0,1, Input material properties by "M" command:

EINT command for solid element

EINT,1,440,1,1

GROUP,2,SOLID E,1,278,279,277,277,347,348,346,346 E,2,279,280,277,277,348,349,346,346 E,3,280,281,277,277,349,350,346,346 E,4,281,282,277,277,350,351,346,346

Other .pre Input Files Including Beam and Shell Elements
.PRE File Input for ABShear Model with Shell Groups

ABShear - Notepad	
File Edit Format View Help	

* THIS FILE WAS WRITTEN BY THE ACS SASSI UI	N. 1034, 147, 417, -117, 503, 100
* To reload model type INP, <this file=""> in UI</this>	N. 1035.147.417107.003.100
***********	* Boundary Conditions
TIT,	D,553,556,1,1,UX,UY,UZ,ROTX,ROTY,ROTZ
* Nodes	D,671,671,1,1,UX,UY,UZ,ROTX,ROTY,ROTZ
N,1,-46.5833,-149.003,26.9167	D, 673, 673, 1, 1, UX, UY, UZ, ROTX, ROTY, ROTZ
N,2,-46.5833,-149.003,49.3333	D,676,676,1,1,UX,UY,UZ,ROTX,ROTY,ROTZ
N,3,-21.5833,-149.003,26.9167	D,687,687,1,1,UX,UY,UZ,ROTX,ROTY,ROTZ
N,4,-21.5833,-149.003,49.3333	D,810,1035,1,1,UX,UY,UZ,ROTX,ROTY,ROTZ
N,5,-46.5833,-149.003,75.9167	* Interaction Nodes
N,6,-21.5833,-149.003,75.9167	INT,363,482,1,1,0
N,7,8.41667,-149.003,49.3333	* Material Table
N,8,8.41667,-149.003,75.9167	M,1,519100,0.17,0,0.07,0.07,1
N,9,68.4167,-149.003,49.3333	M,2,519100,0.17,0,0.07,0.07,1
N,10,68.4167,-149.003,75.9167	M,3,298257,0.17,0,0.07,0.07,1
N,11,98.4167,-149.003,49.3333	M,4,362689,0.17,0,0.07,0.07,1
N,12,98.4167,-149.003,75.9167	M,5,519100,0.17,0,0.07,0.07,1
N,13,104.417,-149.003,75.9167	M,6,260610,0.17,0,0.07,0.07,1
N,14,104.417,-149.003,49.3333	M,7,519100,0.17,0,0.07,0.07,1
N,15,-51.5833,-128.003,75.9167	M,8,455845,0.17,0,0.07,0.07,1
N,16,-46.5833,-128.003,75.9167	M,9,519100,0.17,0,0.07,0.07,1
N,17,-26.5833,-128.003,75.9167	M,10,360878,0.17,0,0.07,0.07,1
N,18,-21.5833,-128.003,75.9167	M,11,210410,0.17,0,0.07,0.07,1
N,19,-6.58333,-128.003,75.9167	M,12,107181,0.17,0,0.07,0.07,1
N,20,8.41667,-128.003,75.9167	
N,21,28.4167,-128.003,75.9167	

M,42,519100,0.17,0,0.07,0.07,1 M,43,519100,0.17,0,0.07,0.07,1 M,44,4.176e+006,0.3,0,0.07,0.07,1 M,45,1e+007,0.17,0,0.07,0.07,1 * Soil Layer Table L,1,2.75,0.136,1821.14,817.967,0.0072,0.0072 L,2,2.4375,0.136,1888.03,845.657,0.00788,0.00788 L,3,2.4375,0.136,1997.61,912.117,0.0161,0.0161 L,4,2.4375,0.136,2021.25,889.741,0.01627,0.01627 L,5,2.4375,0.136,2080.06,880,0.0226,0.0226 L,6,2.5,0.136,2120,880,0.0226,0.0226 L,98,5,0.136,6900,1880,0.0318,0.0318 L,99,5,0.136,6900,1880,0.0318,0.0318 L,100,5,0.136,6883.94,1895.8,0.03172,0.03172 * Real Property Table R,1,11.111,0,0,17.387,10.288,10.288 R,2,13,0,0,22.316,9.75,20.343 R,3,2.849,0,0,28.958,0.333,28.292 * Groups and Elements GROUP,1,TSHELL E,1,63,64,70,69 E,2,69,70,76,75 E,3,75,76,82,81 E,4,81,82,88,87 E,5,87,88,94,93 E,6,93,94,214,213 * Frequencies

FREQ,1,1,5,20,40,60,80,100,120,140,160

FREQ,1,180,200,220,240,260,280,300,320,340,360

FREQ,1,380,400,420,440,460,480,500,520,540,560

FREQ,1,580,600,620,640,660,680,700,720,740,760 FREQ,1,780,800,820,840,860,880,900,920,940,960

E,327,320,335,336,321 E,328,334,349,350,335 E,329,335,350,351,336 THICK,1,329,1,3 MSET,1,329,1,1 GROUP, 2, TSHELL E,1,308,309,577,576 E,2,309,310,574,577 THICK, 1, 2, 1, 3 MSET,1,2,1,2 GROUP, 3, TSHELL E,1,106,105,766,767 E,2,105,104,759,766 E,3,104,103,765,759 E,96,423,438,439,424 E,97,438,453,454,439 E,98,453,468,469,454 THICK, 1, 98, 1, 3 MSET,1,98,1,45 * Masses MT,1,4,4,4 MT,2,4,4,4 MT, 3, 4, 4, 4 MT,4,4,4,4 MT, 527, 4, 4, 4 MT, 528, 4, 4, 4 * Model Options MOPT,1,0,1,1 * Analysis Options AOPT,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Suggestion: After FE model is defined, user should use the UI Analysis/Option Window Input

.PRE File Input for Beam Groups

* Real Property Table
R,1,1400,700,700,1e+009,2.8e+006,2.8e+006
R,2,990,500,500,1e+009,1.9e+006,1.9e+006
R,3,990,500,500,1e+009,1.5e+006,1.5e+006
R,4,990,500,500,1e+009,800000,800000
R,5,990,500,500,1e+009,200000,200000
R,6,2000,1320,1320,1e+009,1.1e+006,1.1e+006
R,7,2560,1560,1560,1e+009,1.2e+006,1.2e+006
R,8,2210,1460,1460,1e+009,1.2e+006,1.3e+006
R,9,1960,730,730,1e+009,1.3e+006,1.3e+006
R,10,1740,600,600,1e+009,900000,900000
R,11,780,360,360,1e+009,4000
R,12,190,70,70,1e+009,4000,4000
R,13,100000,500000,1e+012,2e+009,2e+009

GROUP, 2, BEAMS E,1,139,141,46 E,2,141,142,46 E,3,142,143,46 E,4,143,144,46 E,5,144,145,46 E,6,145,146,46 E,7,146,147,46 E,8,147,148,46 E,9,148,149,46 E,10,149,150,46 E,11,150,151,46 E,12,140,152,46 E,13,152,153,46 E,14,153,154,46 E,15,154,155,46 E,16,155,156,46 E,17,156,157,46 E,18,157,158,46 MSET,1,18,1,2 RSET,1,7,1,1 RSET,8,8,1,2 RSET,9,9,1,3 RSET, 10, 10, 1, 4 RSET,11,11,1,5 RSET, 12, 12, 1, 6 RSET,13,13,1,7 RSET,14,14,1,8 RSET,15,15,1,9

13. Brief Review of Demo Contents

Demo Problem	Softwar	e Features	Description
	Х	Base Software	
		Option A	Introductory demo for ACS SASSI. This demo covers basic ACS SASSI functionality, such as loading model files, running modules, and basic post-Processing and result visualization.
Dama 4		Option AA	
Demo		Option AA-R	
		Option NON	
		Option UPLIFT	
	Х	Base Software	
		Option A	This demo includes a procedure for stress post
Dama 2		Option AA	Processing, including creating stress contour plot animations for critical time steps using the ACS SASSI UI.
Demo 2		Option AA-R	
		Option NON	
		Option UPLIFT	
	Х	Base Software	
		Option A]
Domo 2		Option AA	This demo introduces macros for combination or post-processing results, as well as using the ACS SASSI UI to determine critical frequencies.
Denio 3		Option AA-R	
		Option NON	
		Option UPLIFT	
	Х	Base Software	
		Option A	This demo includes a procedure for performing a SSI analysis with nonlinear soil.
Domo 4		Option AA	
Denio 4		Option AA-R	
		Option NON	
		Option UPLIFT	
Demo 5	Х	Base Software	
	Х	Option A	This demo includes a procedure for for transferring SSI loads to an ANSYS model for equivalent static or dynamic analysis. The conversion of ANSYS models to the ACS SASSI format is demonstrated as well.
		Option AA	
		Option AA-R	
		Option NON	
		Option UPLIFT	

	1		
Demo 6	Х	Base Software	
	Х	Option A	This demo includes a procedure for creating soil finite element models for equivalent static linear soil pressure analysis, and nonlinear soil pressure analysis including foundation separation.
		Option AA	
		Option AA-R	
		Option NON	
		Option UPLIFT	
	Х	Base Software	This demo includes a procedure for performing SS analysis for surface and embedded structures using mass, stiffness, and damping matrices from
		Option A	
Domo 7	Х	Option AA	
Demo /		Option AA-R	
		Option NON	ANSYS.
		Option UPLIFT	
	Х	Base Software	
		Option A	
Domo 0		Option AA	This demo includes a procedure for computing
Demo 8		Option AA-R	structure using the ACS SASSI UI commands.
		Option NON	
		Option UPLIFT	
	Х	Base Software	
		Option A	This demo includes a procedure for performi
Domo 0		Option AA	nonlinear structure SSI analysis with Option NON
Denio 9		Option AA-R	split a model into nonlinear panels and defir backbone curves and nonlinear analysis options.
	Х	Option NON	
		Option UPLIFT	
Demo 10	Х	Base Software	
		Option A	This demo includes a procedure for performing nonlinear SSI analysis for a base-isolated shearwal structure with nonlinear hysteretic isolators.
		Option AA	
		Option AA-R	
	X	Option NON	
		Option UPLIFT	

I	1		1 1
Demo 11	Х	Base Software	
		Option A	
	Х	Option AA	This demo includes a procedure for using ANSYS MATRIX50 elements in an SSI analysis in ACS SASSI.
		Option AA-R	
		Option NON	
		Option UPLIFT	
	Х	Base Software	
		Option A	
D 10		Option AA	This demo performs a pushover analysis of a
Demo 12		Option AA-R	shell
	V	Option NON	
	Х	Base Software	
		Option A	The demo includes a procedure for post-processing
Domo 12		Option AA	SSI analysis results using binary databases. It
Demo 15		Option AA-R	text files from databases, and creating animation from binary databases.
		Option NON	
		Option UPLIFT	
	Х	Base Software	
		Option A	
Domo 14		Option AA	This demo includes a procedure for performing
Demo 14		Option AA-R	shell elements in the ACS SASSUU
		Option NON	
		Option UPLIFT	
Demo 15	Х	Base Software	
		Option UPLIFT	This demo includes a procedure for performing S analysis in ANSYS via harmonic analysis usi
		Option AA	
	Х	Option AA-R	using Option AA-R
		Option NON	
		Option UPLIFT	

	1		
Demo 16	Х	Base Software	
		Option A	This demo describes the procedure for performing fast SSI analysis using the FVROM-INT approach for a deeply embedded shearwall structure. Also applicable to AA-R option.
		Option AA	
	Х	Option AA-R	
		Option NON	
		Option UPLIFT	
Demo 17	Х	Base Software	
		Option A	This demo describes the uplift SSI analysis for a
		Option AA	surface and an embedded RB model using the
		Option AA-R	UPLIFT option.
		Option NON	
	Х	Option UPLIFT	
	Х	Base Software	
		Option A	This demo applies Option NON Advanced to typical
Domo 19		Option AA	RC shearwall building using the US standard and
Denio To		Option AA-R	Japan standard recommendations.
	Х	Option NON	
Demo 19	Х	Base Software	
		Option A	This demo applies Option NON Advanced to typical deeply embedded SMR structure using the Us standard and Japan standard recommendations
		Option AA	
		Option AA-R	
	Х	Option NON	
		Option UPLIFT	

Option PRO and RVT-SIM have separate illustrative example problems provided in their user manuals

14. Verification and Validation

ACS SASSI NQA V4.3.2 Verification & Validation

Verification Manual includes 65 Selected SSI Problems (with more than 100 subproblems, about 500 figures, with more than 5,000 files) to cover ACS SASSI functionalities (except PRO and RVT-SIM):

- Verify Results Against Other Codes: SHAKE91, ANSYS, etc.
- Verify Against Analytical Solutions
- Verify Against Experiments
- Verify by Engineering Body of Knowledge/Judgment
- Verify by a) Result Accuracy and b) Expected Behavior

NQA Maintenance Service: Bugs and Error Reports, Periodic and Focused Memos with comments, Technical Investigation Reports

End of Part 3 Presentation Thank You!