
3-Days Training for Practical Application of ACS SASSI NQA V4 to Seismic SSI Analysis of Nuclear Facility Structures

Ghiocel Predictive Technologies Inc.

Dr. Dan M. Ghiocel

Member of ASCE 4 & 43 Standards

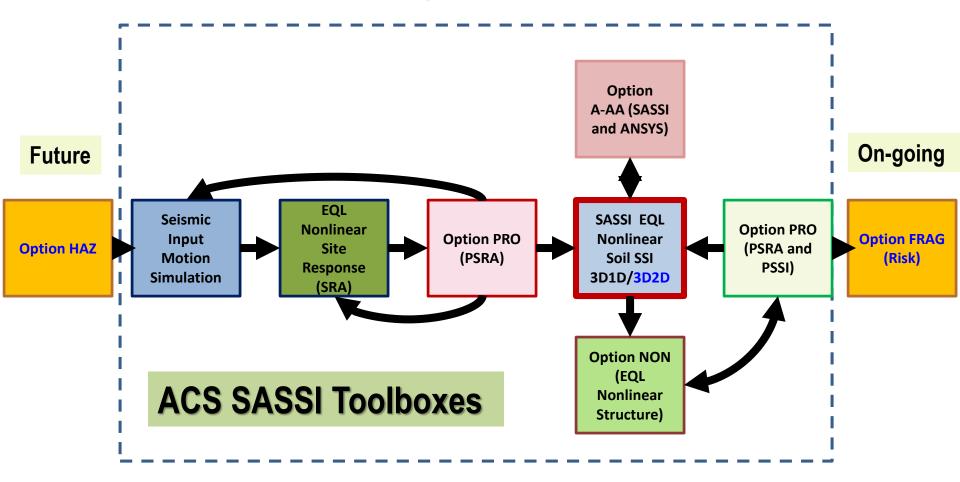
Email: <u>dan.ghiocel@ghiocel-tech.com</u> Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com

Part 3: User Guidance for ACS SASSI V4 Software w/ Demos

USNRC Office, Rockville, MD

June 25-27, 2019

Presentation Content


- 1. New ACS SASSI V4 Software Additional Capabilities
- 2. ACS SASSI Software Modular Configuration, Inputs and User Interface Pre/Post Inputs and Processing Capabilities
- 3. Building SSI Models Using ACS SASSI .Pre UI Commands
- 4. Run Demos and Describe Additional Example Problems Prepared for This Training

1. New ACS SASSI V4 Software. Additional Capabilities.

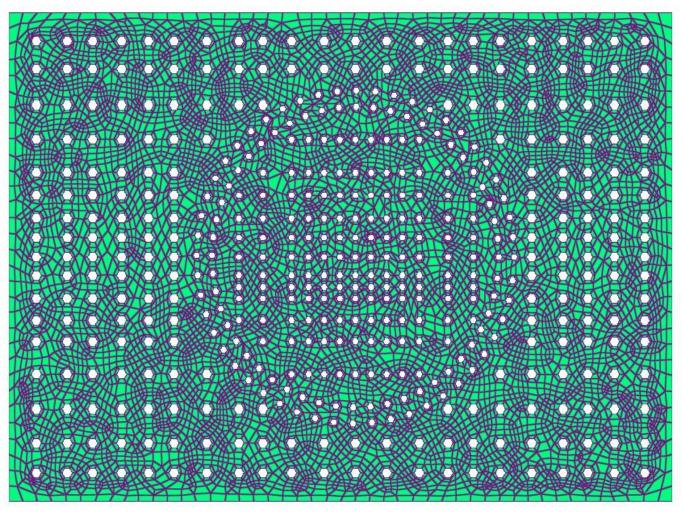
Release date planned for the July 8 Week

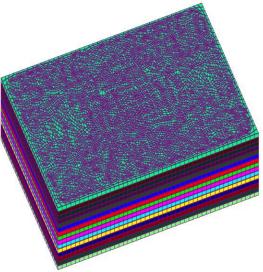
ACS SASSI V4 Development Framework

2019 Options A-AA, NON and PRO, and 2DSOIL 2020-2021 Options HAZ and FRAG

ACS SASSI V4 Software (IKTR0)

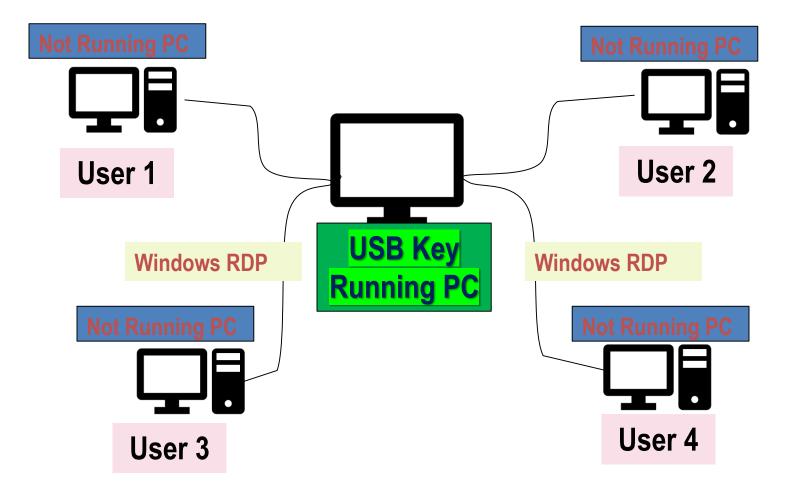
The new ACS SASSI NQA V4 software will be tentatively available by July 15, 2019. The SSI model size is limited to 100k nodes for the baseline version (IKTR0) and up to 1 million nodes for higher capability version (IKTR0_1M).

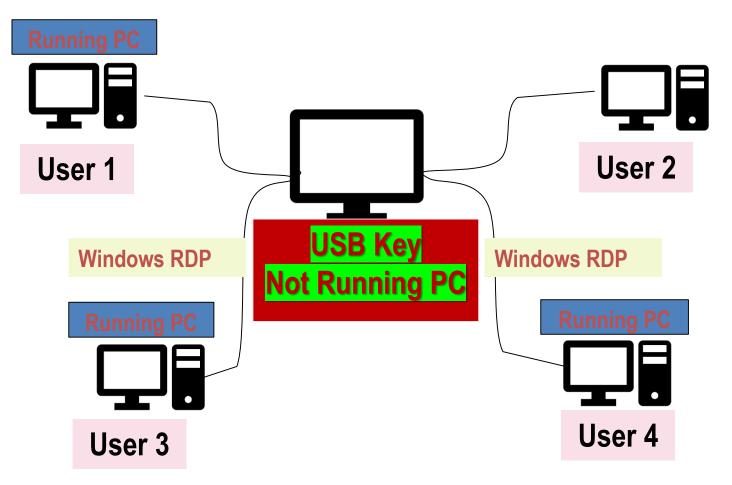

The ACS SASSI V4 (IKTR0) computational speed of the SSI analysis is about 2-3 times faster than the latest ACS SASSI NQA V3 (IKTR10) software.


Depending on the SSI problem size and the MS Windows PC workstation resources, the SSI analysis runtime speed of the new V4 version can go up to 5 times faster than the current 2018 V3 version (for most of tests between 1.7 and 5 times)

ACS SASSI NQA V4 Runs on 512 GB RAM MS Windows 10 PC

Test No.	1	2	3
Problem Name	RB Complex Surface	NI Complex Embedded	Deeply Embedded Structure
Problem Type	Seismic SSI	Seismic SSI	Seismic SSI
Problem Size (nodes)	18743	88245	41661
Inter. Nodes	1389	9648	22707
No	t included in the p	oublic version	
Runtime V3/Runtime V4	3.2	1.7	2.3
3 Parallel SSI Runtime/ Single SSI Runtime	1.05	1.11	1.32
Scalability Perfect is 0.33	0.35	0.37	0.44


RB Complex on Piles Example Includes More Than 220,000 Nodes for Deep Pile Foundation Model



SSI runtime was about 2,800 sec. per frequency on a 128 GB RAM MS Windows PC

Single Workstation License USB Green Key (Current, Non Floating License)

Multiple Workstation License USB Red Key (New, Floating License in Testing)

2019 ACS SASSI V4 SSI Analysis Options

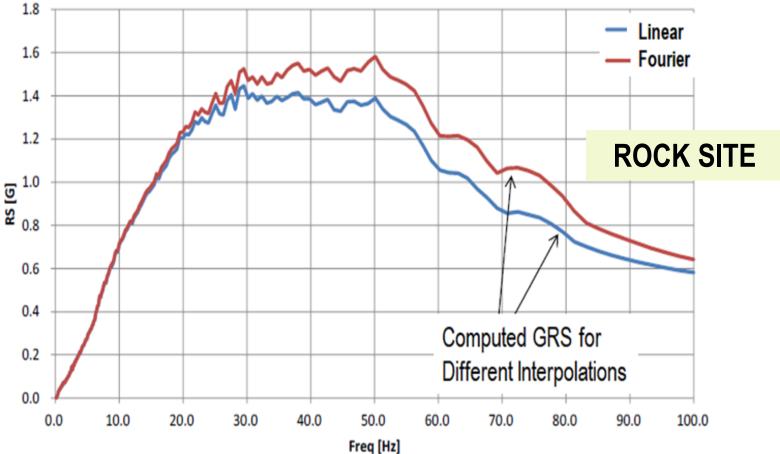
1) Main Software. Include advance pre-post processing, nonlinear soil modeling, motion incoherency, others. Plus, includes seismic motion simulation and site response capabilities.

2) **Option A-AA**. Integration with ANSYS. The ANSYS structure FE models can be used directly for the 1st step of the overall SSI analysis (Option AA), and/or in the 2nd step for the detailed stress analysis using the SSI responses as input BCs (Option A)

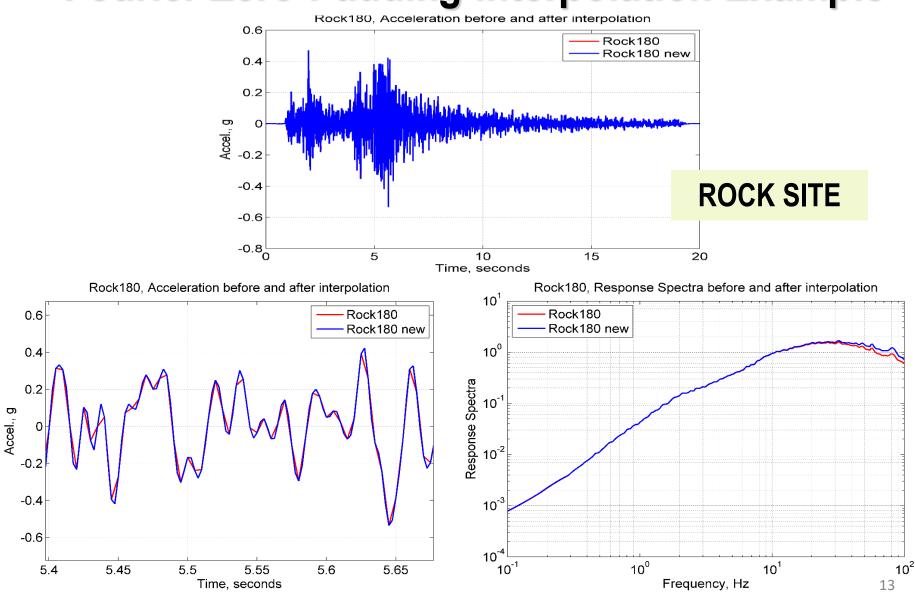
3) **Option NON.** Nonlinear structure, applicable to concrete structures and base-isolation (per ASCE 4-16 Sections 3 and 12)

4) **Option PRO**. Probabilistic SRA and SSI analyses (per ASCE 4-16 Sections 2 and 5.5, RG 1.208 E)

5) New Option 2DSOIL. Uses 3D2D SASSI model instead of 3D1D SASSI model (tentatively by August 31 2019).


ACS SASSI V4 Software New Features

New features include:


- New Fourier zero-padding (FZP) interpolation acceleration time histories. Required for high-frequency. Modification in EQUAKE.
- Improvements on the fast-post processing options. Modification in MOTION, RELDISP and STRESS.
- New FE type called HVD (3D High Viscous Damper) for seismic base-isolation problems. Modification in HOUSE.
- New Option 2DSOIL for nonhorizontal soil layering. Developed a new NST Module.
- New UI commands to support new functionalities; HVD, Binary Options for MOTION, RELDISP, STRESS, new 2DSOIL option

New Fourier ZP Interpolation for High-Frequency

ACS SASSI V4 EQUAKE module includes the *Fourier zero-padding interpolation for acceleration histories* for computing the response spectra in the high-frequency range. ASCE 43-19 requirement.

Computing High-Frequency RS Using EQUAKE Fourier Zero-Padding Interpolation Example

UI Analysis Options for RELDISP Input

EQUAKE	SOIL	SITE	POINT	HOUSE	FORCE	ANALYS	MOTION	STRESS	RELDISP	NONLINEAR	AFV
- Reldisp I	nput Forn	nat						1			
TFI AS		FFI Bina	ry								
Reference	e Locatio	n and D	irection			(Jse M	OTIOI	N TFI	Text Fra	amo
Compley	TF File N	lame [(Curren	t onti	ion 9	runs	
	1						unch			Tunis	
Reference	e Node II										
Dutput C	ontrol										
Save	Rel Disp C	Complex	TF								
Accelera	tion Time	History	/ Data		Nodal O	utput Data					
Nr. of Fo	urier Con	nponen	ts 0		Node N	lum X	Y Z XX	YY ZZ			
Time Ste	p of Con	trol Mot	tion 0								
Multiplic	ation Fac	tor	0								
Max Valu	e for Tim	e Histo	ry 0								
First Rec	ord		0								
Last Rec	ord		0								
Title											
File				-	Ac	ld	Edit	[)elete		
File C	ontains P	airs Tim	ie Step - A	ccel.							
			-		ntions						
Binary O No Bir		lion		cessing O		at in All Ma	odes 🗌 Re	etant Eas Er	Concert	tion	
O TFO BI	-				for ANSYS		ues 🔄 Ke	start For Fra	inte General	uon	
O THD B			Save	Notations	TOT AINSYS	,					

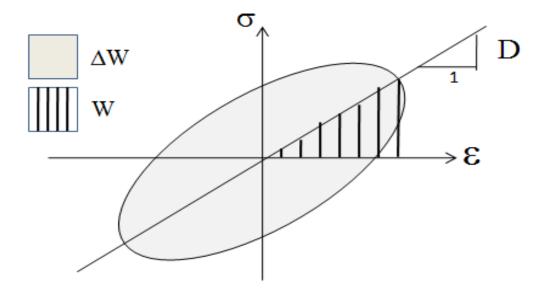
UI Analysis Options for RELDISP Input

EQUAKE	ons	1	Y	Y		1			1	1	×
	SOIL SITE	POINT	HOUSE	FORCE	ANALYS	MOTION	STRESS	RELDISP	NONLINEAR	AFWRITE	
Reldisp Inp			U	se MC	ΤΙΟ	N TFI	Rinar				
○ TFI ASCII	I 💿 TFI Bina	ary						•			
Reference L	Location and I	Direction	Ne	ew op	tion	. Only	/ 3 ru	ns.			
TFL Dinary I	DB Name						Input Dire	ction			
Reference I	Node ID						● X ○ Y	Οz			
Output Cor						1					
	l Disp Comple										
	on Time Histor	-		Nodal Out	out Data						
	ier Componer			Node Nur	m X	Y Z XX	YY ZZ				
	of Control Mo										
Multiplicat		0					Fas	ster Bi	nary DE	3 Post-F	Proces
Mary Value 4	for Time Histo	ory 0							ON and		
First Record	_	0									11
First Record	_	0									
First Record Last Record Title	_					5.15					
First Record Last Record Title	d	0		Add		Edit		elete			
First Record Last Record Title	_	0	ccel.	Add		Edit		elete			
First Record Last Record Title	d ntains Pairs Tir	0 me Step - Ac	cel.			Edit		elete			
First Record Last Record Title File File Con Binary Out; No Binar	d ntains Pairs Tir put Option	0 me Step - Ac Post Proc	essing Op Relative Dis	tions	in All No	Edit			ion		
First Record Last Record Title File File Con Binary Out No Binar TFD Bina	d ntains Pairs Tir put Option Ty ary	0 me Step - Ac Post Proc	essing Op	tions	in All No				ion		
First Record Last Record Title File File Con Binary Out; No Binar	d ntains Pairs Tir put Option Ty ary	0 me Step - Ac Post Proc	essing Op Relative Dis	tions	in All No				ion		
First Record Last Record Title File File Con Binary Out No Binar TFD Bina	d ntains Pairs Tir put Option Ty ary	0 me Step - Ac Post Proc	essing Op Relative Dis	tions	in All No				ion		
First Record Last Record Title File File Con Binary Out No Binar TFD Bina	d ntains Pairs Tir put Option Ty ary	0 me Step - Ac Post Proc	essing Op Relative Dis	tions	in All No				ion		

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

ACS SASSI V4 Finite Element Library

The FE library allows the use of the following linear element types:

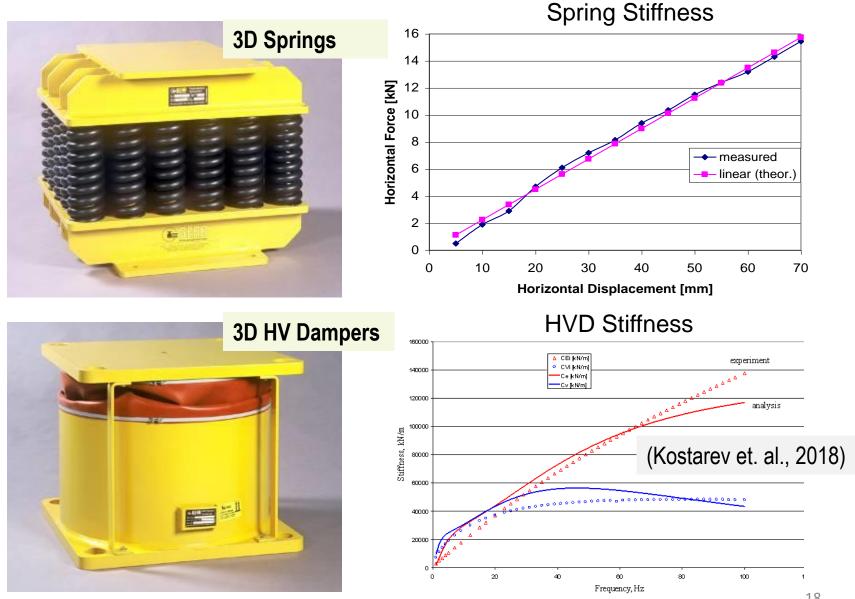

3D solid elements
3D beam elements
3D plate / thin shell elements
3D plate / thick shell elements
2D plane strain elements
3D spring elements
3D stiffness/mass generalized elements
3D highly viscous damper elements

type SOLID
type BEAMS
type SHELL
type TSHELL
type PLANE
type SPRING
type GENERAL
type HVD

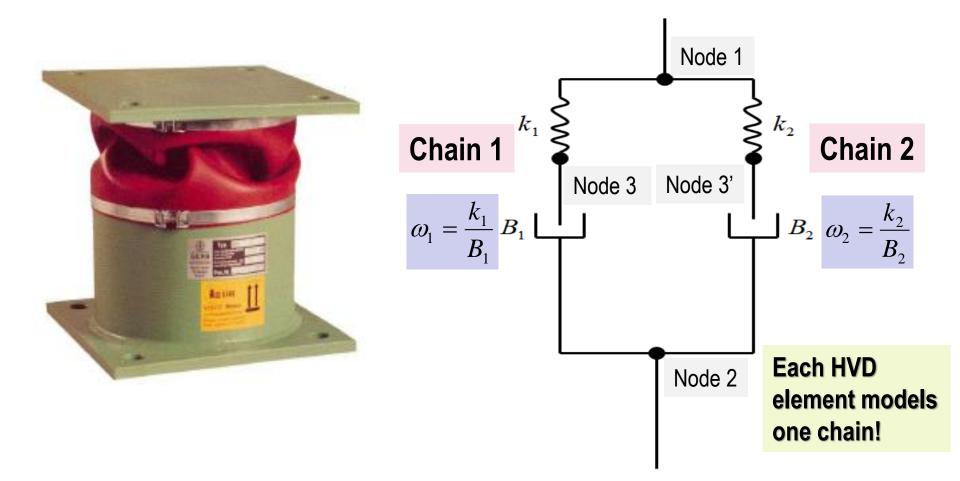
The excavated soil is modeled using the following element types: SOLID for 3D FEM

PLANE for 2D FEM

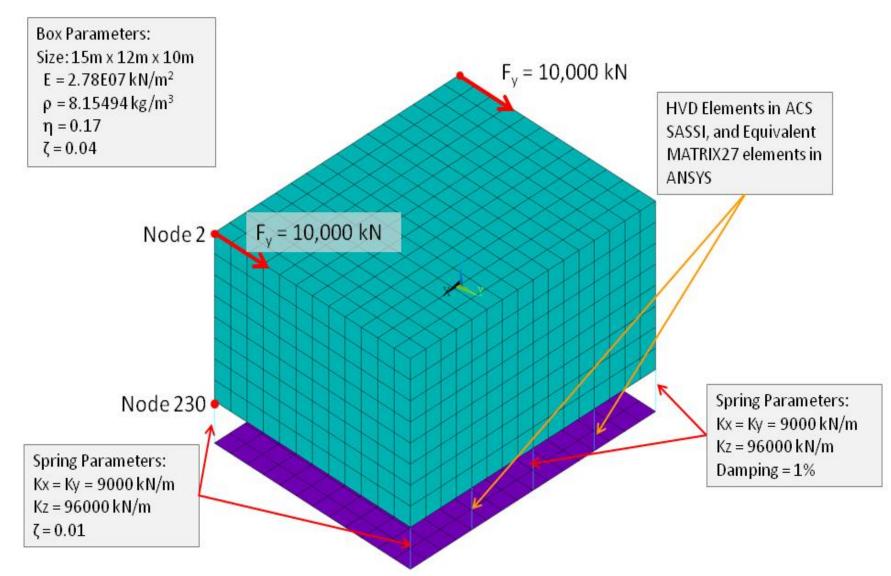
Linearized Hysteretic and Viscous Models

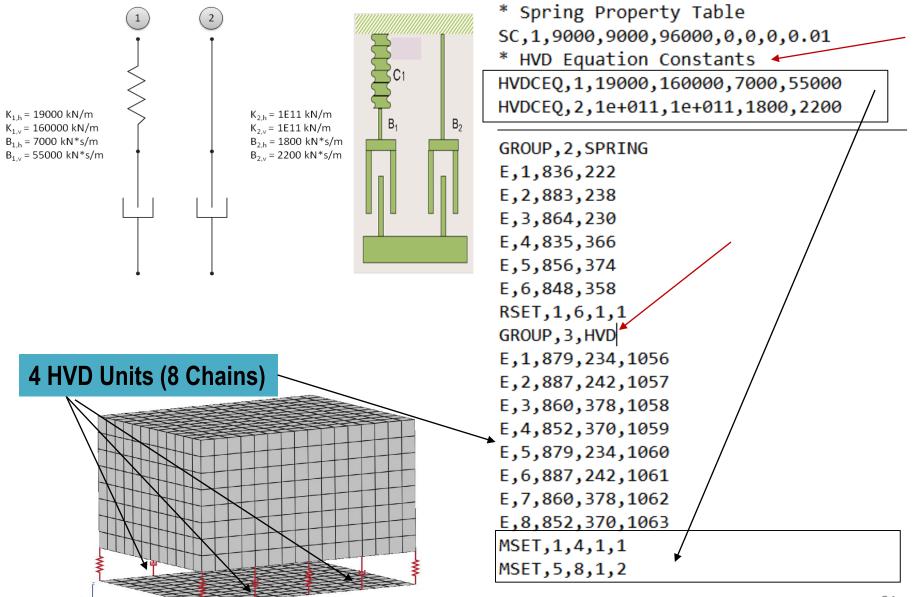

Damping (Imaginary Part)

Hysteretic Model (Frequency-Independent); LRB, FB/SB for HORIZ (2D)

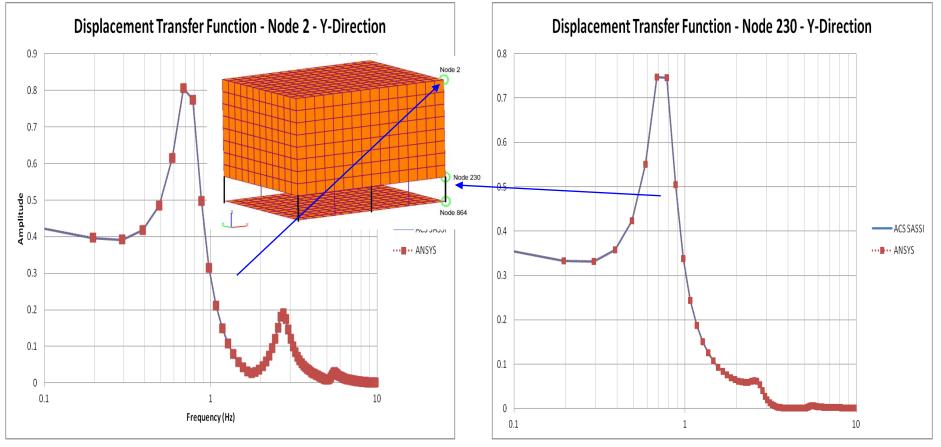

$$\tan \delta = \frac{\operatorname{Im} \operatorname{ag}(D^*)}{\operatorname{Re} \operatorname{al}(D^*)} = \frac{1}{2\pi} \frac{\Delta W}{W}$$

Viscous Model (Frequency-Dependent); *HVD* for HORIZ and VERT (3D) $\tan \delta = \frac{\operatorname{Imag}(D^*)}{\operatorname{Real}(D^*)} = \frac{c(\omega)\omega}{\operatorname{Real}(D^*)}$ (Not mentioned in ASCE 4-16)


New 3D HVD Elements Simulate BCS Isolators


3-Node HVD Element is Based on 4-Parameter Maxwell Model

Simple Validation Example for HVD Elements


Validation of ACS SASSI V4 3-Node HVD Elements

ACS SASSI vs. ANSYS (Using MATRIX27) Dynamic Displacement Harmonic Response Results

Top of Structure

Bottom of Structure

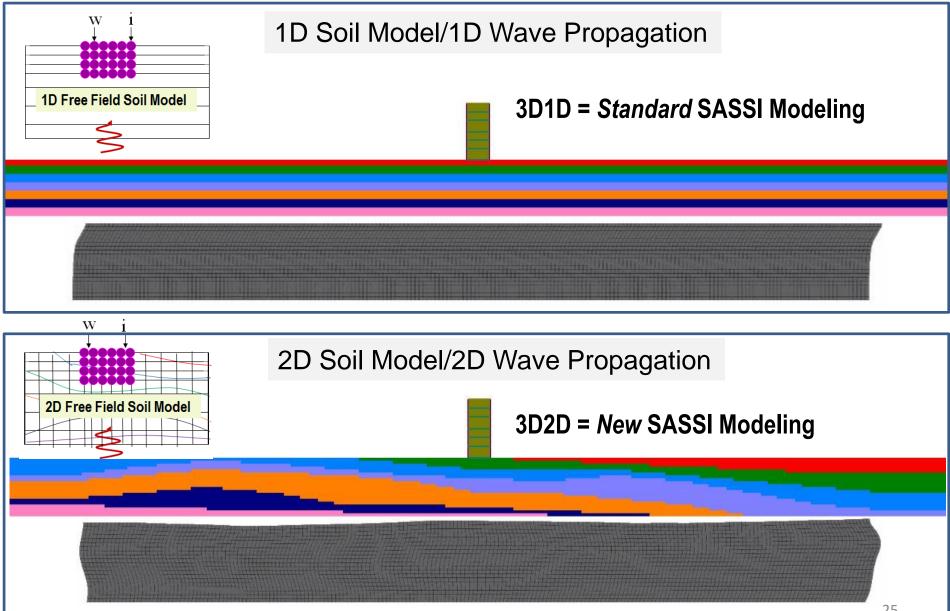
Seismic SSI Analysis per ASCE 4-16 Section 12 on Base-Isolation) Using Two-Step Approach

- Seismic SSI Analysis for Nonlinear Hysteretic Base-Isolators:
 - 1) SSI step: Nonlinear-isolator FD SSI using iterative equivalent linearization based on the shear forces computed in isolators to get the SSI responses (including the bottom base motion)
 - 2) Validation step: Nonlinear-isolator TD SSI analysis for the basemat SSI motion computed at SSI Step assumed as input (for flexible base or rigid, if acceptable)

Validation Step Option A for ANSYS Dynamic Nonlinear

SSI Step:

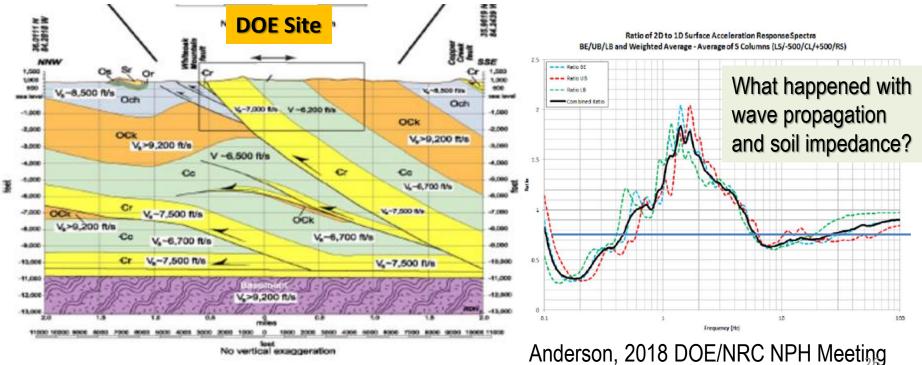
Option NON

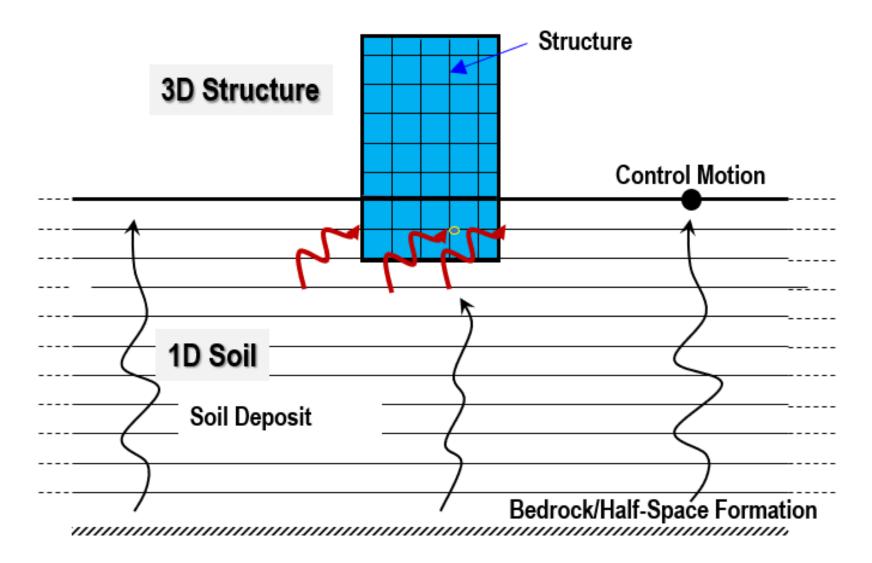

- *Simplified*: Assume rigid base and use its SSI acceleration motion (3 translations&3 rotations). *Neglect the base deformation.*
- Accurate: Consider the flexible base as is and use its SSI acceleration and relative displacement motions, or its absolute displacement motions at bottom as input. *Recommended.*

REMARK: Validation step should be used to *validate/calibrate SSI* step; Use ACS SASSI NON for SSI step and then, ANSYS nonlinear dynamic based on time integration as validation step (Option A)

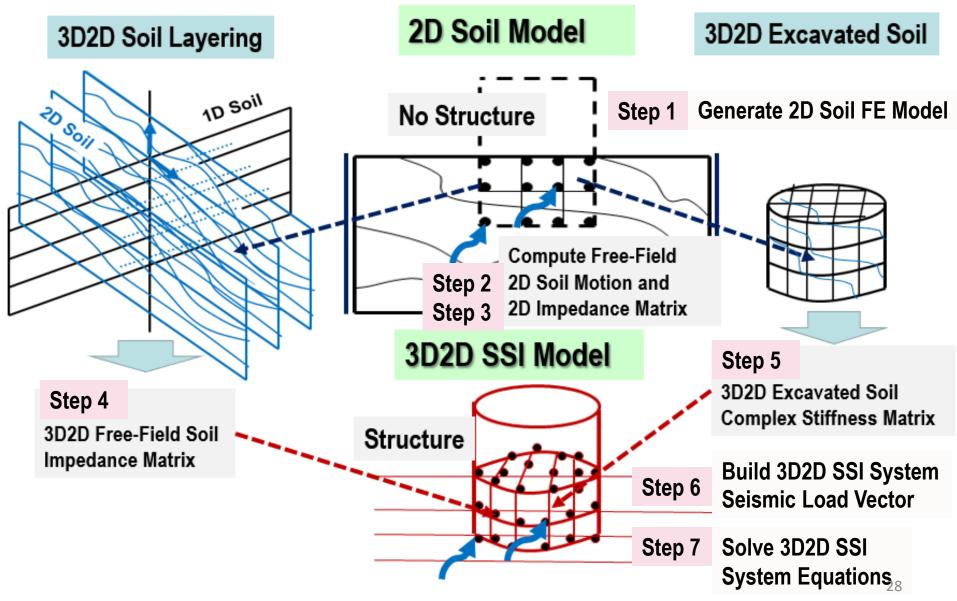
UI Input Windows for Option A Dynamic Option

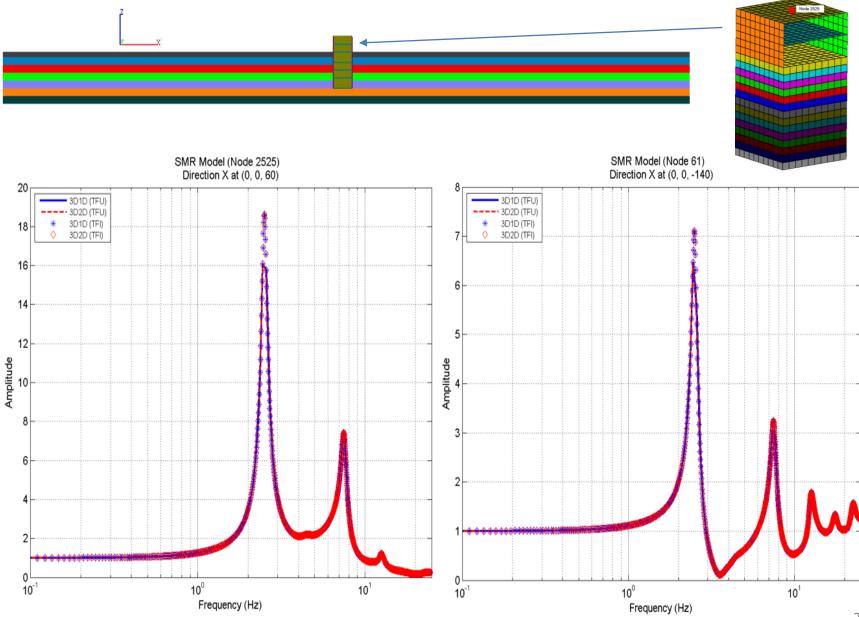
ANSYS Dynamic Load Converter	×
SASSI Model and Results Input	
Path	
HOUSE Module Input	Compute absolute displacements
Ground Acceleration File	(relative SSI plus free-field motion).
Free Field Displacement	Include contact surface for ANSYS.
Contact Node Mapping File	<<
 ANSYS Model and Data Input	Useful for ANSYS dynamic analysis option for
Path	2 nd step structure stress nonlinear analysis
Rayleigh Damping Coeff.	(ASCE 4-16 Chapters 8, 11, 12)
Alpha	Beta
ANSYS Output File	New SOILCONTACT Command
ADPL File	<<
Ok	Cancel


New Option 2DSOIL Uses 3D2D SASSI Modeling


NPP Sites with Inclined Soil Layering

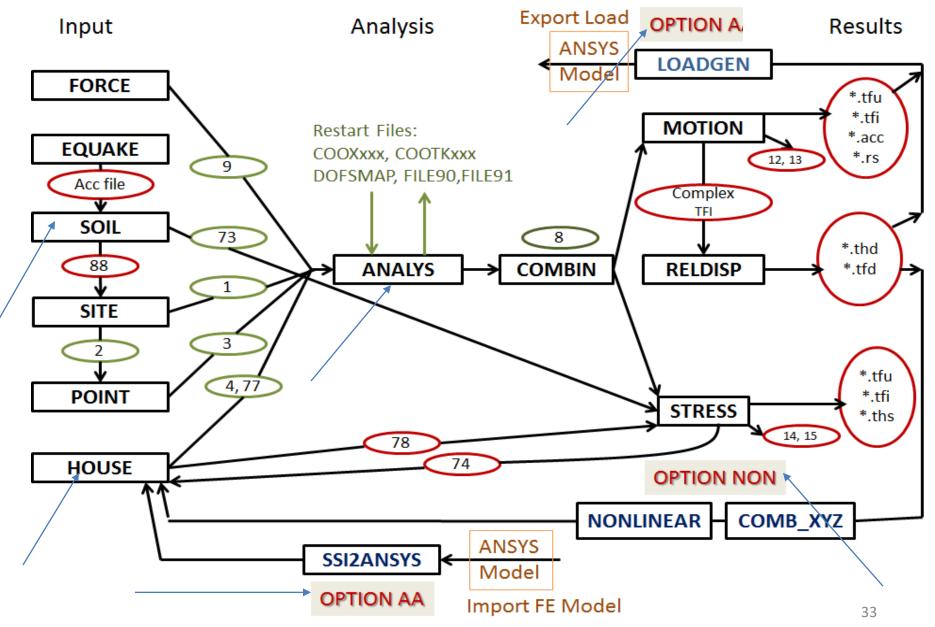
1-Dimensional SRA is commonly used for NPP projects as specified in the regulatory guidelines and design standards, e.g. RG1.208 and ASCE 4-16.


1-Dimensional SRA may not capture all aspects of wave propagation at a site, which may potentially result in a bias with respect to the true site amplification. This soil modelling uncertainty needs to be evaluated in site amplification estimates. *The 2-Dimensional soil models are useful for these situations*.


"Standard" 3D1D SASSI Modeling

3D2D SASSI Modeling Concept Description

Simple Validation of 3D2D vs. 3D1D SASSI

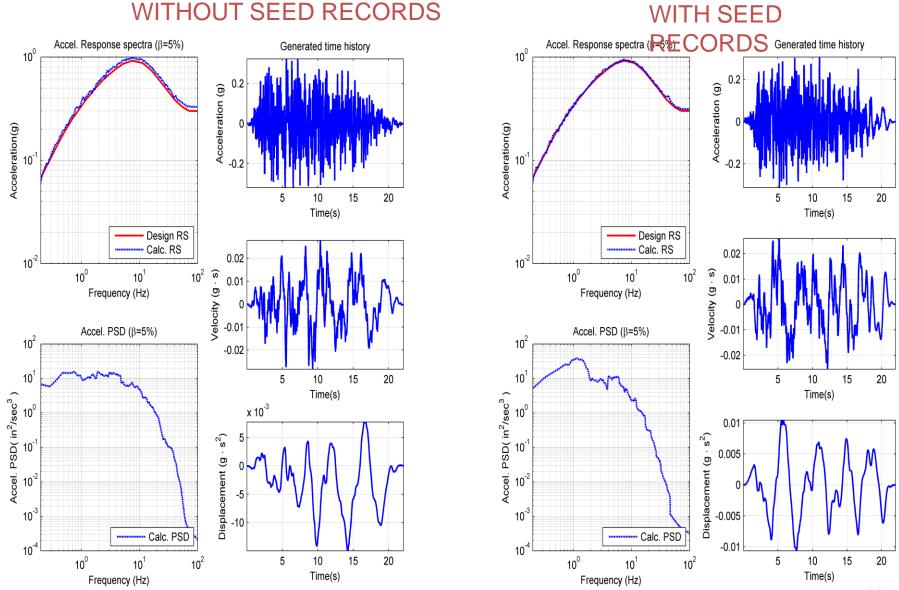

2. ACS SASSI Software Modular Configuration, Inputs and User Interface Pre/Post Inputs and Processing Capabilities

Modular Configuration

ACS SASSI SSI Modules (Main Software)

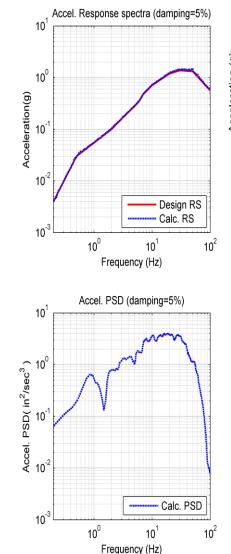
- 1. EQUAKE Generates Control Motion
- 2. **SOIL** Compute Equivalent Soil Properties and Free-Field Motions
- 3. SITE Compute Site Layering Behavior Under Different Wave Types
- 4. **POINT** Compute Soil Layering Flexibilities Under Point Loads
- 5. HOUSE Defines the Structure and Near-Field Soil and Incoherence
- 6. ANALYS Compute Impedances & Solves SSI Problem (ATF solution)
- 7. **MOTION** Computes Accelerations, RS in Structure/Near-Soil
- 8. **RELDISP** Computes Relative Displacements
- 9. STRESS Computes Stresses/Strains in Structure and Near-Soil
- 10. **COMBIN** Combine ANALYS Solutions with Different Frequencies

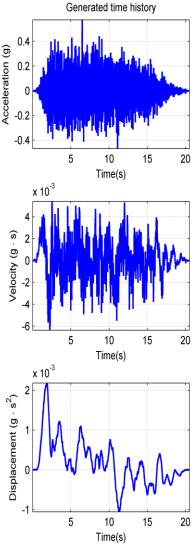
ACS SASSI Modular Configuration

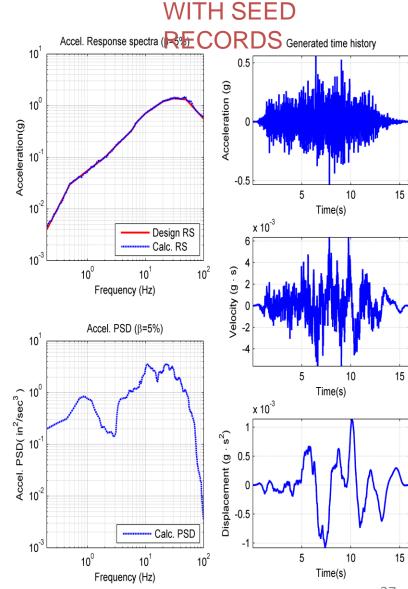


User Interface Inputs for SSI Modules

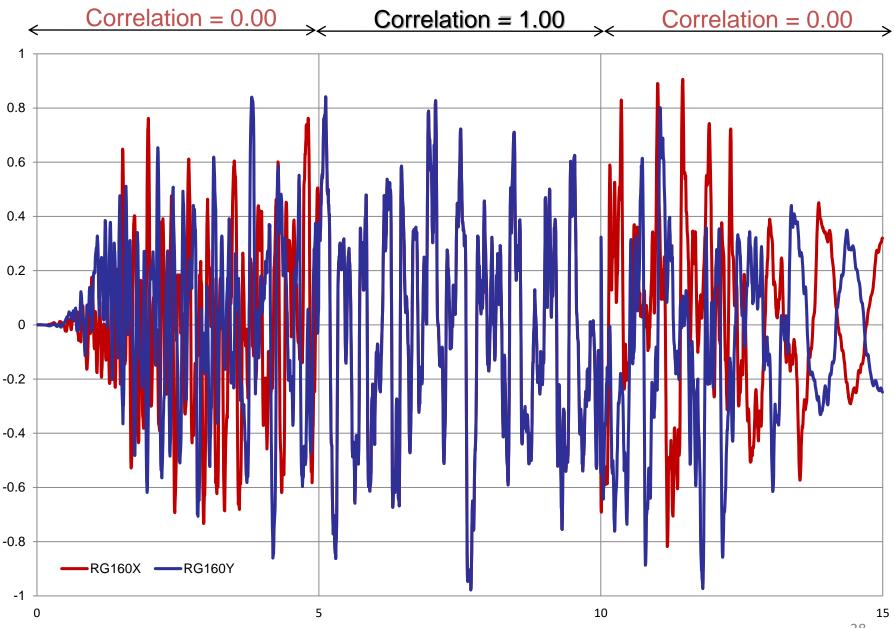
Simulation of Input Control Motion (EQUAKE)

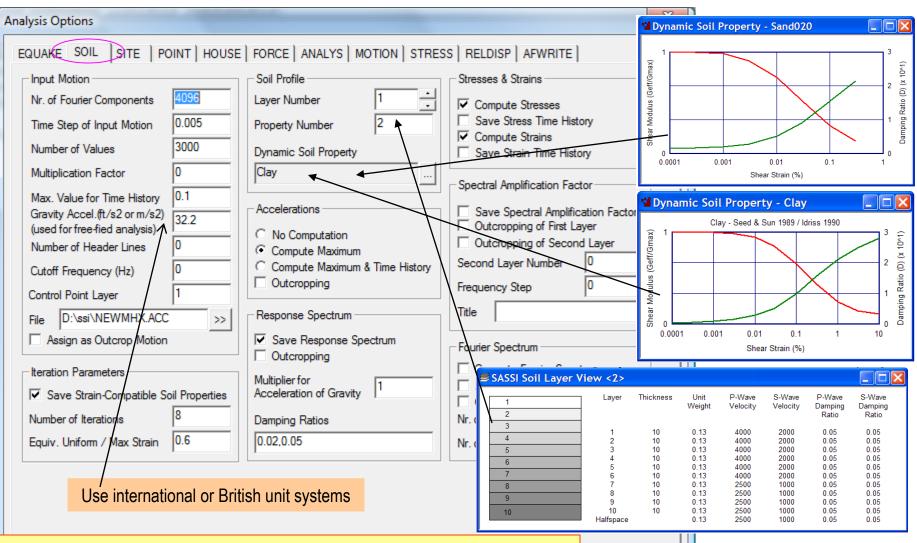

Analysis Options	EQUAKE Spectrum Compatible
EQUAKE SOIL SITE POINT HOUSE FORCE ANALYS MOTION STRESS RE	Accelerograms are assumed to be Independent or Correlated
Spectrum Files	Spectrum File - NEWMHX.RSO'
Spectrum Input File >>	Curve 1
Spectrum Output File >>	
Acceleration Output File >>	2
Optional Spectrum Files Is based on Wiener-Levy Algorithm	
IV Accel. Record Datemai Aa	
Acceleration Input File C:\SSI\Demo5\ACCELNS.ACC >> PSD File	
Number of Frequencies 8393 Correlation	
Initial Random SEED	
Damping Value 0 Time Step 0.005	O Time History File - m1stacc
Total Duration	
Number Of SEEDs 0 5 Uses ph	
Correlated from recor	. I TRAN PAGE MAN, AND TRANSMISSION AND AND AND AND AND AND AND AND AND AN
Spectra Title	
	A. Marketta and R. Marketta and M. Marketta and A. A.
	-0.0895
Includes non-stationary correlation between X and Y components	


EQUAKE Module Capabilities – Firm Soil Site



EQUAKE Module Capabilities – Rock Soil Site

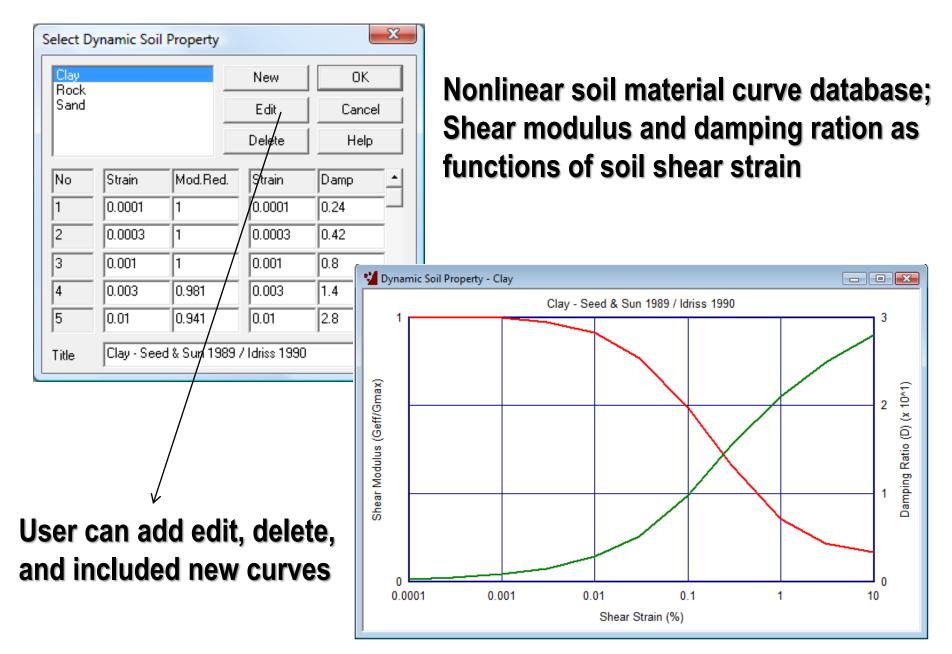




Spectrum Compatible Accelerograms with Nonstationary Correlation

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

Site Response Via SHAKE Methodology (SOIL)



Equivalent Soil Properties and Motions are computed assuming Vertically Propagating S and P Waves

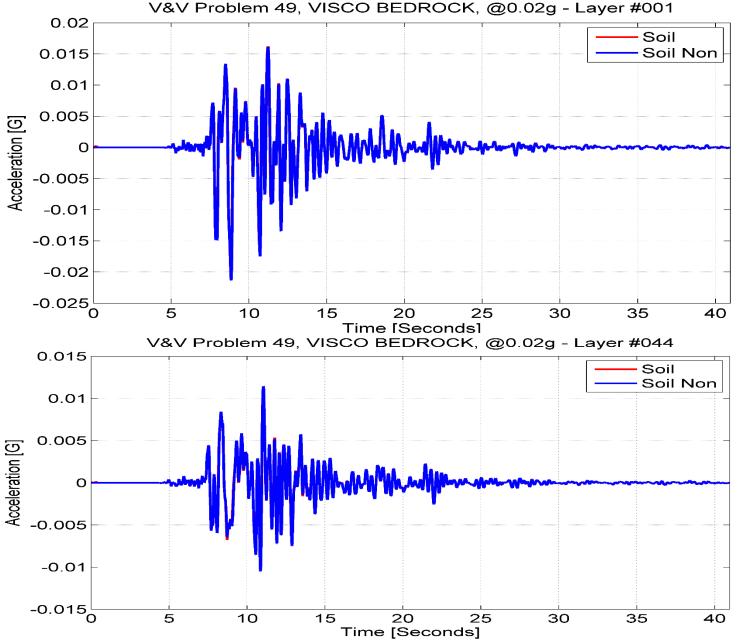
2019 Copyright of Ghiocel Predictive

Technologies, Inc., All Right Reserved.

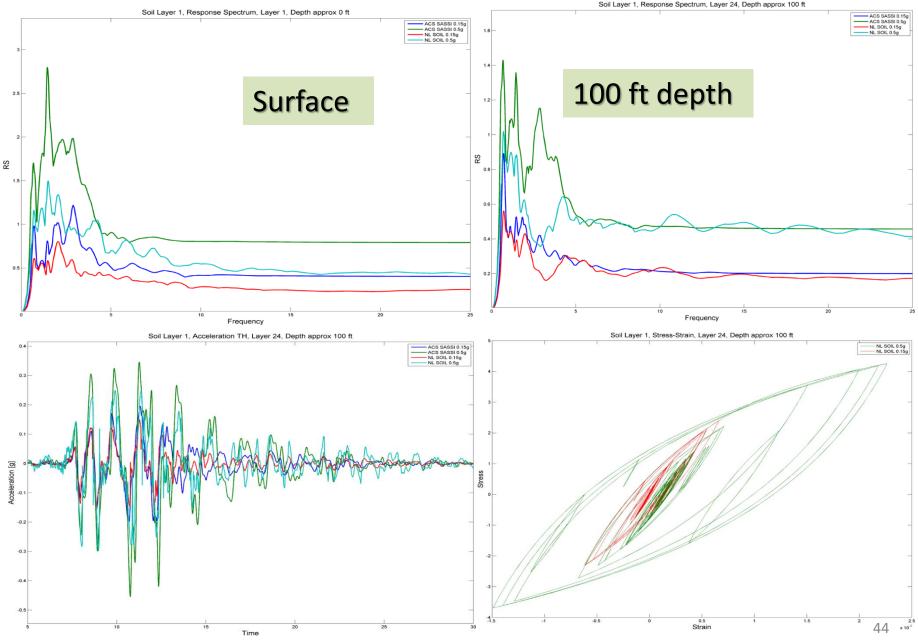
Help

Computation of Equivalent Soil Properties

Input Acceleration Time History .85600 MAXIMUM ACCELERATION = **SOIL Module** AT TIME 4.37 SEC = THE VALUES WILL BE MULTIPLIED BY A FACTOR = .350 (based on SHAKE approach) .30000 TO GIVE NEW MAXIMUM ACCELERATION MEAN SQUARE FREQUENCY = 6.87 C/SEC. **Computes Equivalent Soil** CONTROL MOTION LAYER *** ** MOTION OF LAYER NUMBER 1 OUTCROPPING **Properties Using** *** STRAIN COMPATIBLE SOIL PROPERTIES *** **Seed-Idriss Equivalent** 8 MAXIMUM NUMBER OF ITERATIONS STRAIN FACTOR IN TIME DOMAIN . 60 **Linear Model** = EARTHQUAKE C:\AC5_C\NEWMHX.ACC **Initial Soil Layering Properties** SOIL PROFILE DESCRIPTION *** NEW SOIL PROFILE NO. 1 IDENTIFICATION 5 DEPTH TO BEDROCK 40.00 NUMBER OF LAYERS DAMPING NO. TYPE THICKNESS DEPTH TOT. PRESS. MODULUS UNIT WT. SHEAR VEL (ft) (ft) (ksf) (kcf) (ksf∕ (fps) .65 1 1 10.00 5.00 4037. 050 .130 1000.0 2 3 1 10.00 15.00 1.64 037. .050 .130 1000.0 1 25.00 2.31 4037. .050 .130 10.00 1000.0 4 2.99 4037. .050 .130 1 10.00 35.00 1000.0 5 4037 .050 .130 1000.0 BASE .16 FOR AVERAGE SHEAR VELOCITY 1000. PERIOD = Final Soil Layering Properties ITERATION NUMBER - 8 VALUES IN TIME DOMAL NO TYPE DEPTH DAMPING <---- SHEAR MODULUS ----> G/GO UNIFRM. <-------> (FT) STRAIN NEW USED ERROR NEW USED ERROR RATIO 1 5.0 .00296 014 .014 3877.2 3877.2 1 .0 .0 .960 2 .00909 1 15.0027 .027 0.0 3466.9 3466.9 .0 .859 3 1 25.0 .01629 038 .038 0.0 3055.3 3055.3 0.0 .757 35.0 2729.1 .676 1 .02485 047 .047 0.0 2729.2 0.0 2019 Copyright of Ghiocel Predictive


PERIOD = .18 FOR AVERAGE SHEAR VELOCITY echnologies, Inc., All Right Reserved.

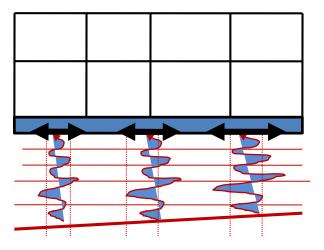
SOIL Module Including DEEPSOIL Option


EQUAKE SOIL SITE POINT	HOUSE	FORCE	ANALYS	MOTION	I STRESS	RELDISP	NONLINEAR	AFWRITE	
nput Motion		Soil Profile				Stresses Strains			
Number of Fourier Components	0	Layer Number 1			▲ ▼	Compute Stresses			
Time Step of Input Motion	0	Proper	ty Number	0			e Stress Time Hi	istory	
Number of Values	0	Dynamic Soil Property				Compute Strains			
Multiplication Factor	0							-	
Max Value for Time History	0	Acceler	rations				al Amplification		
Gravity Accel. (ft/s^2 or m/s^s)	32.2	Accelerations				Save Spectral Amplification Factor			
(used for free-fixed analysis)	0	 No Computation Compute Maximum 					-		
Number of Header Lines	0					Outcropping of First Layer Second Layer Number 0			
Input Direction	0	⊖ Cor	npute Max	kimum Ti	me History		ncy Step	0	
inear Site Respo	nse	Out	cropping			Title			
•			Response Spectrum				Spectrum		
ne domain using		Save	e Response	e Spectru	m	Cor	npute Fourier Sp	pectrum	
he theory as DEEPSOIL			Outcropping				e to File		
•		Multip	lier for ration of G	avity 0		Out	cropping		
Number of Iterations 0			ng Ratios	, and y		Nr. of	Smoothings	0	
Equiv. Uniform / Max Strain						Nr. of	∀alues to be Sav	red 0	
Nonlinear Soil									
Nonlinear Time Domain					✓ Curve fit	Hyperbolic	Darameters		
Subincrements per Timestep	50				Beta	0			
Displacement Convergence Error		Damping Ty	vne (1 2 3)	0	S exponent	0	-		
Force Convergence Error		Mass Matrix		0	Reference St		-		
Equilibrium Iterations				0			-		
quilibrium iterations		Stiff Matrix	Mult.	<u> </u>	Viscosity	U			
							Ok	Cancel	
								Currect	

20192068ymghrishGhlodeipPreBictivetiVeJmblogiesi, mb., CAIARIght Reserved.

SOIL-NON DEEPSOIL vs. SOIL SHAKE Methods

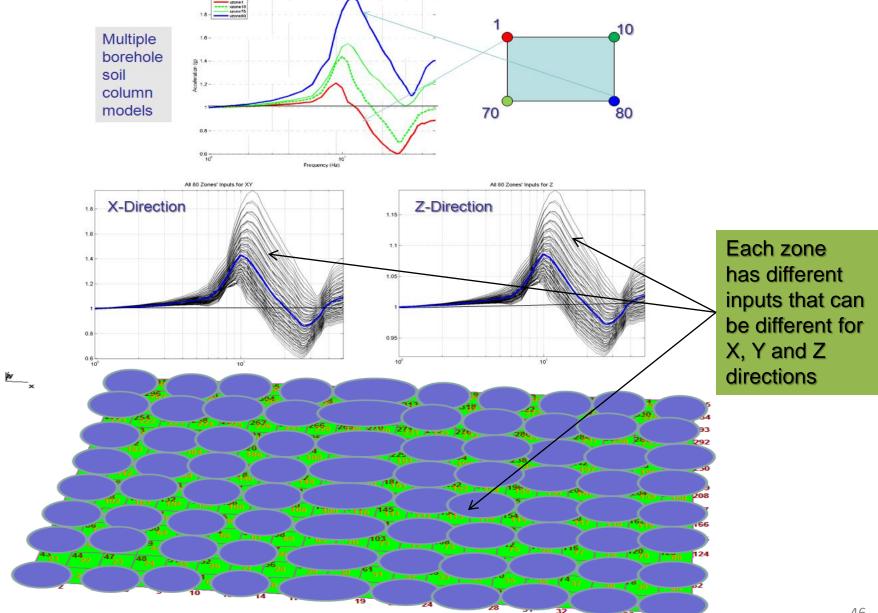
Equivalent-Linear vs. Nonlinear Site



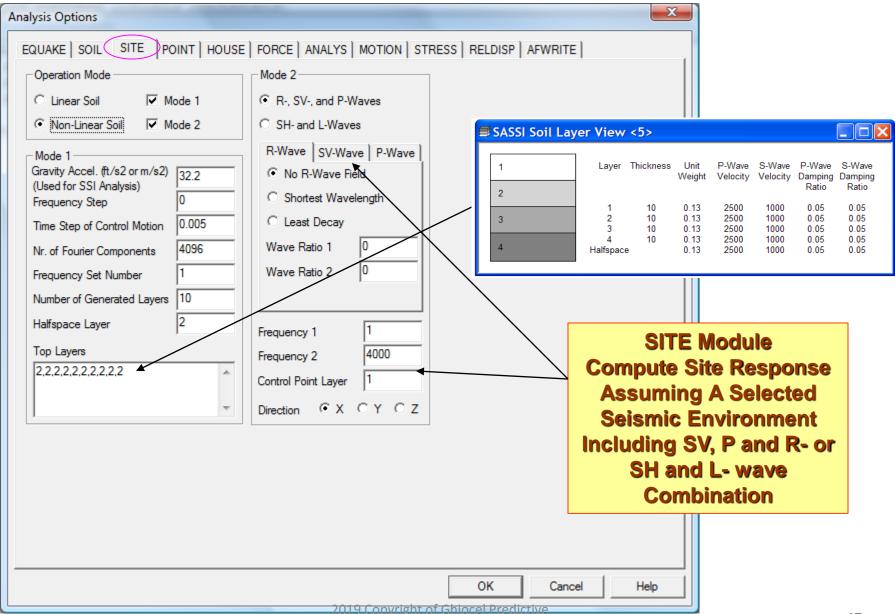
2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

Nonuniform Seismic Input Motion in Horizontal Plane

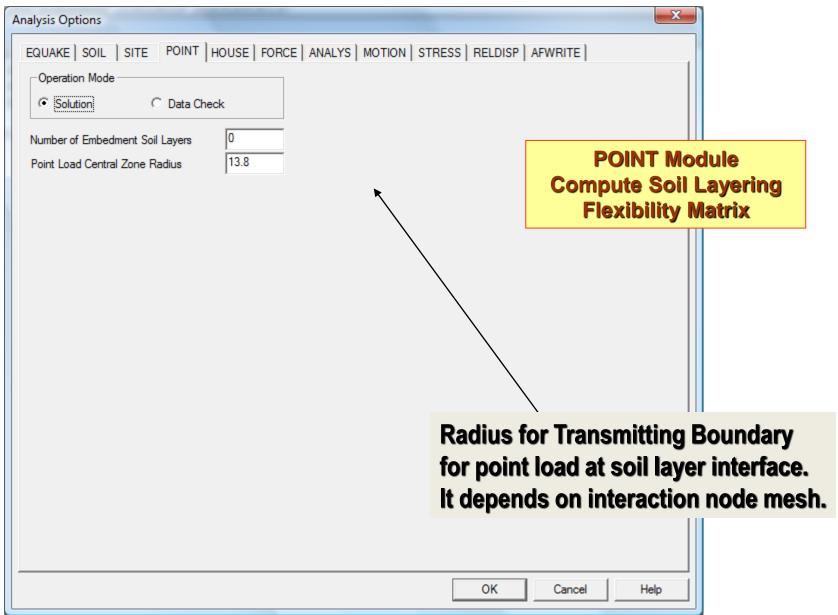
Multiple Soil Column Response Analyses


Non-Uniform Excitation and Soil Stiffness

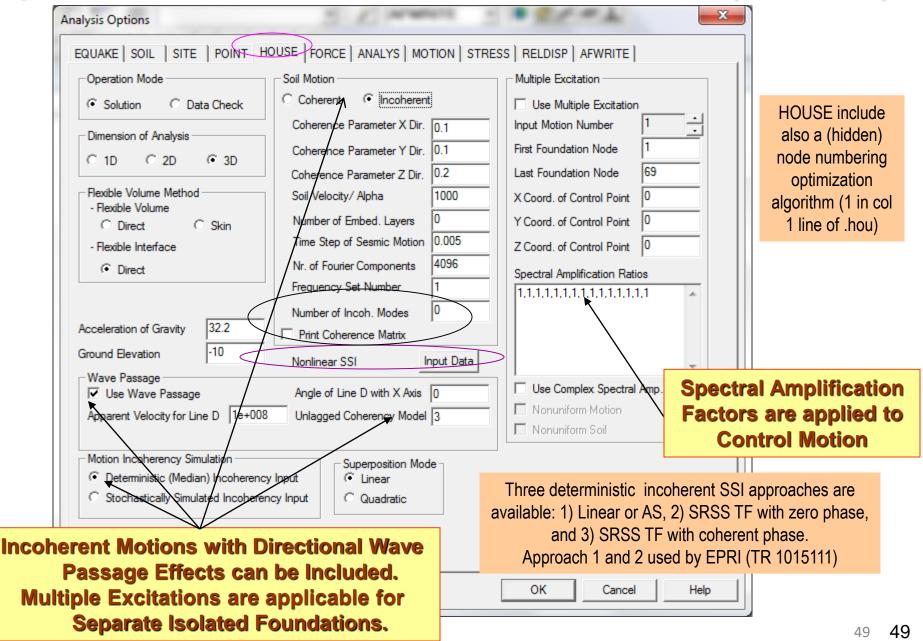
ACS SASSI Version 2.3.0 has the capability to consider deterministic spatial variation patterns for differential input motions in the horizontal plane.


These deterministic spatial variation effects can be combined with the effects of motion incoherency and wave passage to create more realistic seismic inputs for SSI analysis of NPP structures, especially for those that have large foundation sizes.

Nonuniform Seismic Input Motion in Horizontal Plane


²⁰¹⁹ Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

Selection of Seismic Wave Environment (SITE)


Technologies, Inc., All Right Reserved.

Input for Computing Soil Flexibility Matrix (POINT)

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

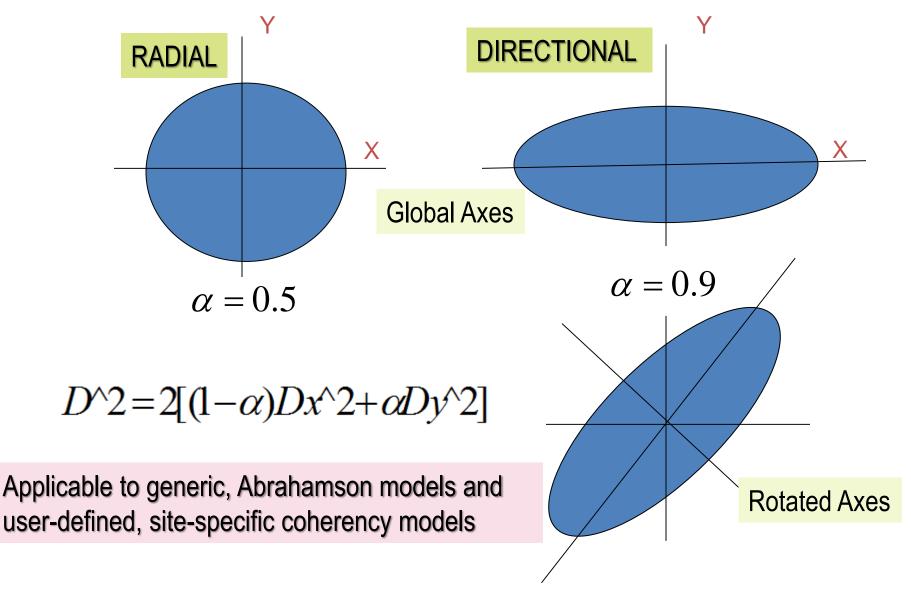
Inputs for Coherent and Incoherent SSI (HOUSE)

2014 PROPRIETARYOMFORMAGHOM OFFICEPERINDLOGIES LOGOS, SASSIM2301TRAUMAG FOR ANL, Chicago, IL

HOUSE Module for Incoherent SSI

EQUAKE SOIL SITE POINT HO	DUSE FORCE ANALYS MOTION STRESS RELDISP NONLINEAR AFWRITE
Operation Mode Solution O Data Check Dimension of Analysis	Soil Motion Multiple Excitation O Coherent Incoherent Input Motion Number 1
 1D 2D (a) 3D Flexible Volume Method Flexible Volume(FV) Fast Flexible Volume(FFV) Flexible Interface(FI) Acceleration of Gravity 32.2 	Coherence Parameter X Dir0First Foundation Node0Coherence Parameter Y Dir0Last Foundation Node0Coherence Parameter Z Dir0X Coord. of Control Point0Alpha Directionality Factor0.50Y Coord. of Control Point0Number of Embedded Layers8Z Coord. of Control Point0Time Step of Seismic Motion0.005Spectral AmplificationSpectral Amplification
Ground Elevation 0 Non-Linear SSI Input Data ☐ Optimize Model Wave Passage ☑ Use Wave Passage Apparent Velocity for Line D 1.e+8	Frequency Set Number 1 Number of Incoh. Modes 0 Print Mode Contributions Up to 50 stochastic wave field Angle Line D with X Axis 0 Unlagged Coherency Model 5
Motion Incoherency Simulation O Deterministic (Median) Incoherency I Stochastically Simulated Incoherency ANSYS Model Input Embedded	Vertical Seed Number 45892 Type Random Phase (Degrees)
ochastic approach for incoherent Sanbers for different simulations. Rando	
	Ok Cancel 50

HOUSE Incoherent SSI Capabilities


There are several plane-wave incoherency models (with wave passage effects):

- 1) 1986 Luco-Wong model (theoretical, unvalidated, geom anisotropic)
- 2) 1993 Abrahamson model for all sites and surface foundations
- 3) 2005 Abrahamson model for all sites and surface foundations
- 4) 2006 Abrahamson model for all sites and embedded foundations
- 5) 2007 Abrahamson model for hard-rock sites and all foundations (NRC)
- 6) 2007 Abrahamson model for soil sites and surface foundations
- 7) User-Defined Plane-Wave Coherency Functions for X, Y and Z.

REMARKS:

- 1) Also includes *directional* Abrahamson or user-defined coherency models.
- For general, more complex situations, can include *nonuniform motion in horizontal plane* by both amplitude and phase changes at different interaction nodes;
- 3) Analyst can include *different coherent functions at different depth levels* in the freefield using HOUSE create FILE77 for each node layers of interaction nodes, and append all FILE77 files together for all interaction nodes. CAREFULL OPTION. *NOTE: To include automatic checking for the mode shapes*

Radial vs. Directional Motion Coherency Models

Near-Field Soil Input for Nonlinear SSI

By clicking the "Nonlinear SSI" Input Data in HOUSE a text file is opened for editing.

This file has extension .pin and needs to input in a free-format:

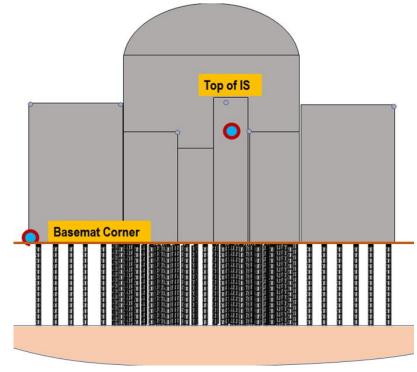
1st line: Number of nonlinear soil element groups, effective strain factor, number of soil material curves defined in SOIL (soil constitutive model);

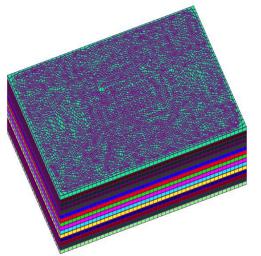
2nd line: Number of the nonlinear soil element group, number of materials (could be equal with the number of layers or not) in the group and number of solid elements in the group

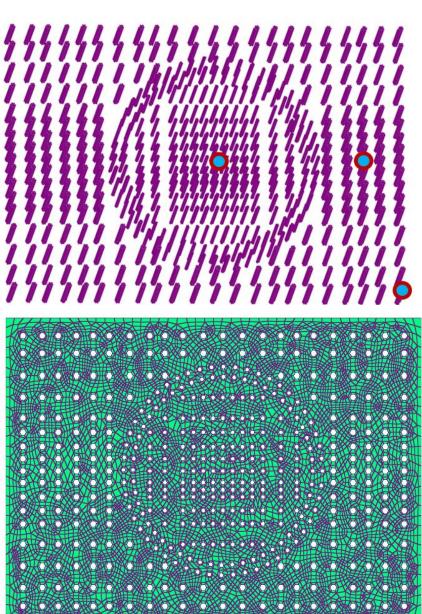
3rd line and after define a loop over the number of soil materials, with each line including: The initial shear modulus reduction factor (1.00 indicates same shear modulus as in free-field), the initial damping ratio factor (1.00 indicates the same damping as in free-field) and the soil material curve order number.

The block of lines after 1st line, needs to be input for all nonlinear soil element groups.

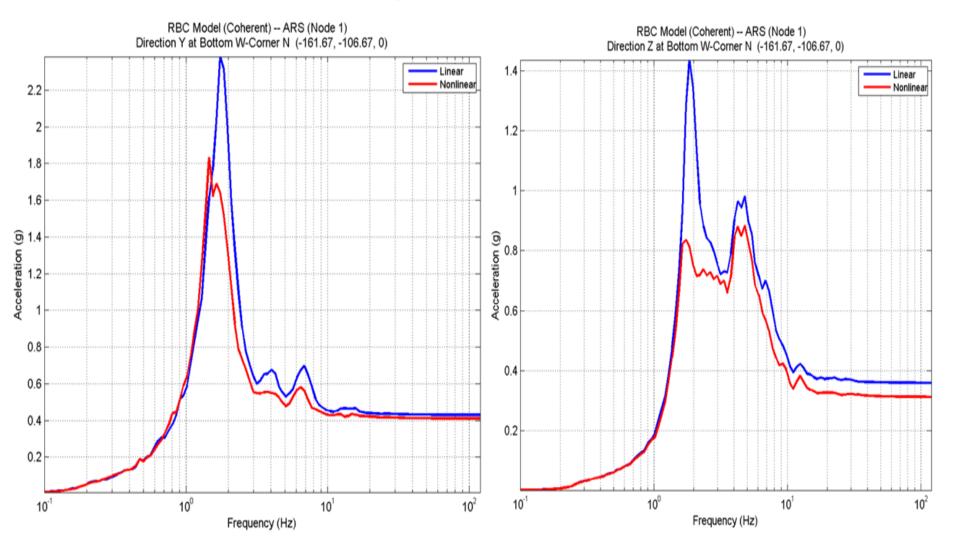
Near-Field Soil Input for Nonlinear SSI (cont.)

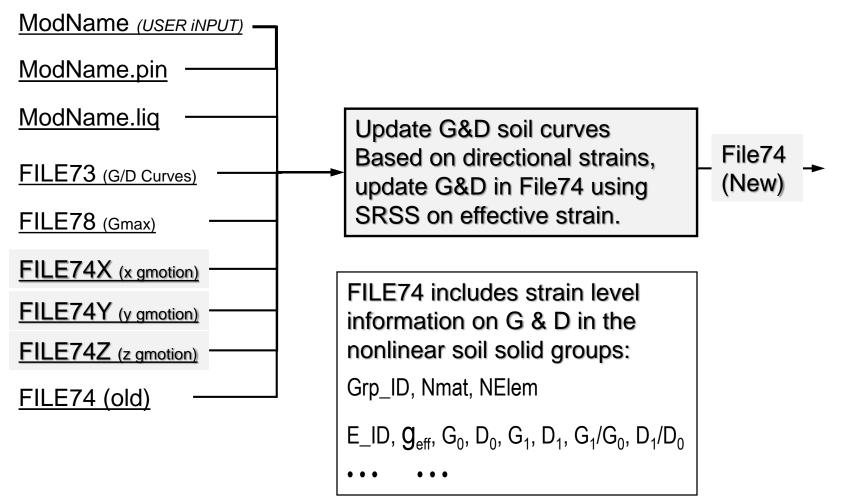

Example with a single group of nonlinear soil elements, an effective strain factor of 0.60 and 2 soil material curves.


The order number of the nonlinear soil group is 2, the number of soil materials in the group is 5, and total number of elements in the group is 180.


For each the 5 soil material lines, we input 1.0 for the scale factor of G, 1.0 for the scale factor of D, and 1 for material curve (curve number are defined in SOIL).

C:\ACSV21\Problem14\Problem14.pin	FF	<u>NF</u>
1, 0.6, 2 2, 5, 180 1.0, 1.0, 1		
1.0, 1.0, 1 1.0, 1.0, 1 1.0, 1.0, 1		
1.0, 1.0, 1 New option added for 3D models		


RB on Piles Example for Nonlinear Soil Effects



Effects of Nonlinear vs. Linear Soil Behavior In Vicinity of Piles on ISRS

Auxiliary Program COMB_XYZ_STRAIN for Combining SSI Soil Shear Strains in 3D Space

2D/3D Soil Nonlinear Soil for Site or SSI Response

Use of nonlinear 2D PLANE elements similar to the use of nonlinear 3D SOLID elements for 3D SSI analysis

COMB_XYZ_STRAIN Module for 3D SSI Models

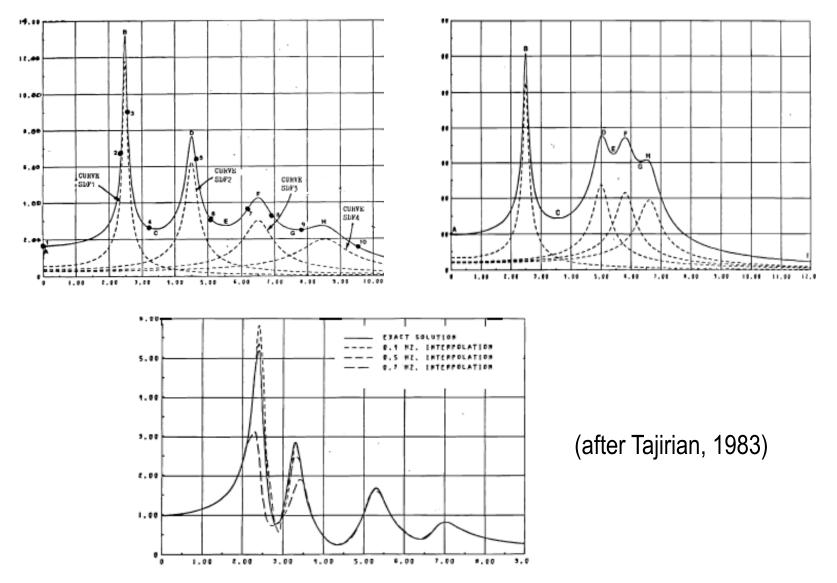
Constitutive Model Criteria based on:

- 1) Maximum Component Shear Strain (X)
- 2) Maximum Shear Plane Criterion (Maximum Octahedral Strain for 3D SSI

ANALYS Module Coherent & Incoherent SSI

Free-Field Load Free-Field Motion Full Rigid Body Impedance Matrix 6X6	E			
 Solution O Data Check Frequency Set Number 1 Input Motion Node 0 X Coordinate of Control Point 0 X Coord. of Control Point 0 Y Coord. of Control Point 0 Z Coord. of Control Point 0 Z Coord. of Control Point 0 Global Impedance Calculations No Impedance Calculations Only Decoupled (Diagonal) Impedances Full Rigid Body Impedance Matrix 6X6 				
 Seismic Foundation Vibration Mode Of Analysis Initiation New Structure New Seismic Environment New Dynamic Loading Control Motion Foundation Reference Point X-Coordinate of Control Point Coordinate Transformation Angle Coherent Incoherent Wave Passage Effects Included Free-Field Load Free-Field Motion 				
Simultaneous Cases 20 Delete Restar Files	First Foundation Node0Last Foundation Node0X Coord. of Control Point0Y Coord. of Control Point0Z Coord. of Control Point0Global Impedance CalculationsImpedance CalculationsOnly Decoupled (Diagonal) Impedances			
Simultaneous Cases 20 Delete Restan Files Save Restart Files Print Amplitude Ontri Up to 50 stochastic SSI response simulations in a single SSI analysis run (up to 150 FILE8s)	ict"			
Ok Cancel 2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.				

This optional input is only for the fast-solver HOUSE module. To save significant SSI runtime for batch runs, the ANALYSFS can solve simultaneously all three X, Y and Z input directions for seismic analysis (seismic option), or to up to 500 load cases of external forcing function (vibration option).


For seismic analysis the user should type 1 to get all three X,Y and Z direction results in a single run. The ANALYS run results will be saved in three FILE8 files computed for X,Y and Z inputs named FILE8X, FILE8Y and FILE8Z. The ANALYS output will include ATF computed for all three directions. To use this option for seismic analysis, the SITE module should be run before ANALYS run for X, Y and Z direction inputs and generate the FILE1X, FILE1Y and FILE1Z files. The user should select the SV waves for the X-direction by selecting x' direction and 0 angle in the .sit SITE input file, the SH waves for the Y-direction by selecting y' direction and 0 degree angle and the P waves in the Z-direction by selecting z direction and 0 angle. The coordinate transformation angle in the .anl ANALYS input file should be 0.

It should be noted that if the "Simultaneous Cases" is selected for incoherent SSI analysis, then, up 50 simulations can be solved in a single run. The FILE77 produced by HOUSE should be also replicated in the FILE7001, FILE77002, up to FILE77050 before the ANALYS module is run.

For external force/vibration analysis the user should type an three-digit number to input multiple load cases, up to 500 load external force cases. To use multiple external force cases up to 500 load cases in a single ANALYS run, the FORCE module should be run before ANALYS for all considered load cases and generate the FILE9001, FILE9002, FILE9003...up to FILE500.

For the 50 load cases, ANALYSFS produces the 150 FILE8 files named FILE8001, FILE8002, FILE8003,...up to FILE8150 depending on the number of load cases.

Transfer Function Interpolation Technique

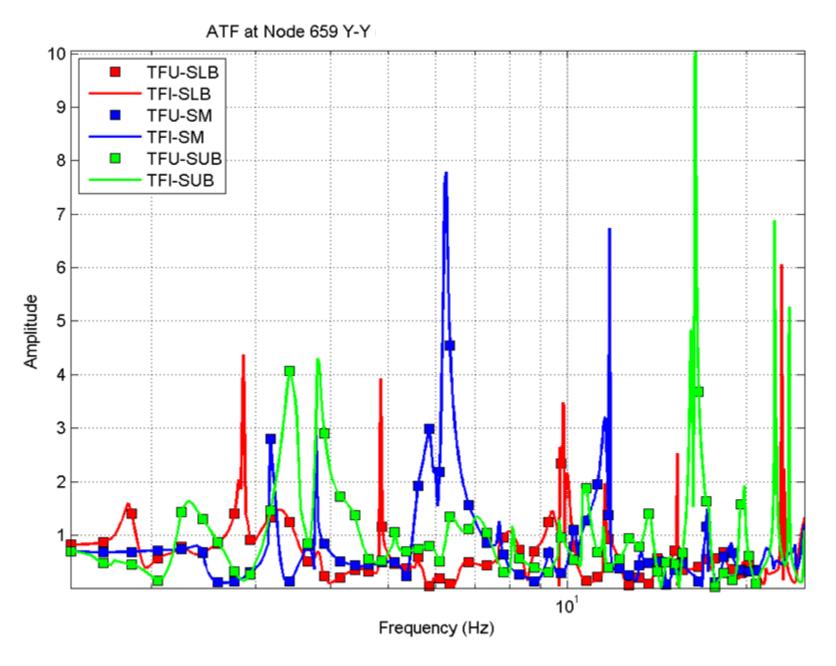
²⁰¹⁹ Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

Transfer Function Interpolation Technique

- The frequency interpolation technique used to interpolate the response for frequencies in between the calculated and to obtain the response for all FFT frequencies is based on the frequency response function of a two-degree-of-freedom system.
- The total response of a two-degree-of-freedom system subjected to harmonic base excitation for each degree-of-freedom has the following general from

$$U^{i}(\omega) = \frac{C_{1}^{i}\omega^{4} + C_{2}^{i}\omega^{2} + C_{3}^{i}}{\omega^{4} + C_{4}^{i}\omega^{2} + C_{5}^{i}}$$

To compute the complex coefficients a five equation system needs to be solved

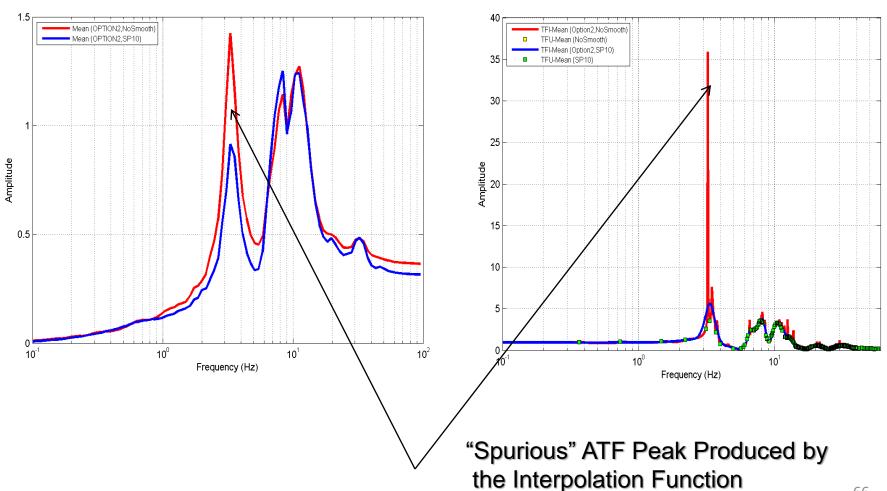

$$\begin{bmatrix} \omega_1^4 & \omega_1^2 & 1 & -\omega_1^2 U_1 & U_1 \\ \omega_2^4 & \omega_2^2 & 1 & -\omega_2^2 U_2 & U_2 \\ \omega_3^4 & \omega_3^2 & 1 & -\omega_3^2 U_3 & U_3 \\ \omega_4^4 & \omega_4^2 & 1 & -\omega_4^2 U_4 & U_4 \\ \omega_5^4 & \omega_5^2 & 1 & -\omega_5^2 U_5 & U_5 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \end{bmatrix} = \begin{bmatrix} \omega_1^4 U_1 \\ \omega_2^4 U_2 \\ \omega_3^4 U_3 \\ \omega_4^4 U_4 \\ \omega_5^4 U_5 \end{bmatrix}$$

Note:

Based on our experience that the two-degree-of-freedom-system interpolation technique may sometimes introduce some spurious spectral peaks and valleys. Thus, it is recommended when significant spectral peaks are identified between the frequency solution points to add new frequency points in that range. 63

Criteria for Selecting Frequency Solution Points

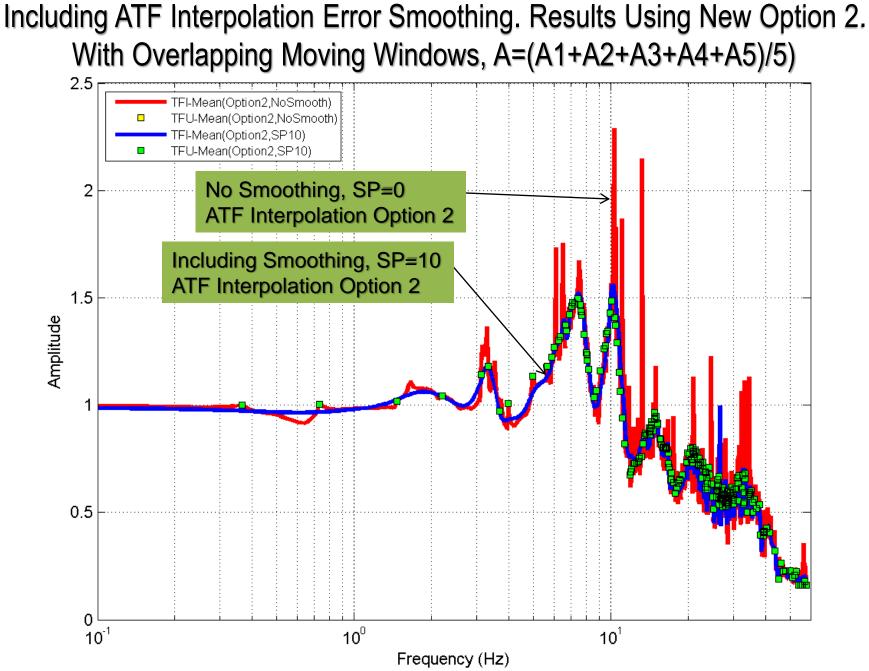
- Depend on the number of peaks in the transfer function at the specific response location and how close these peaks are located relative to each other.
- The frequencies of analysis can be selected by recognizing that the SSI effects usually shift the frequencies to the lower frequency range and tend to flatten the sharp peaks or sometimes even eliminate the fixed-base response peaks.
- Most of the practical problems are sufficient to solve SSI solution for a limited number of frequencies; about 40-50 frequencies for stick SSI models and about 50-200 frequencies for 3D SSI models. A larger number of frequencies needed for rock sites than soil sites.
- If no information on natural frequencies of the system are is available, it is necessary to selected adequate number of frequencies with an uniform increment throughout the frequency range of interest. Then, after revising the results, more frequencies are added to reconstruct the missing spectral peaks.



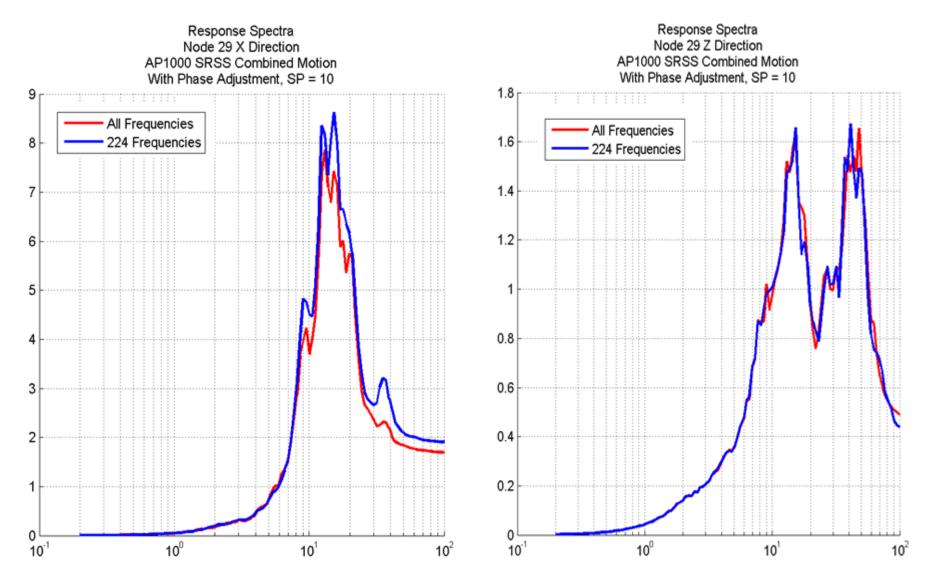
2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

ATF Interpolation Error Smoothing Results; No Smoothing vs. Smoothing For Interpolated ATF. Need to Correlate RS and ATF Results

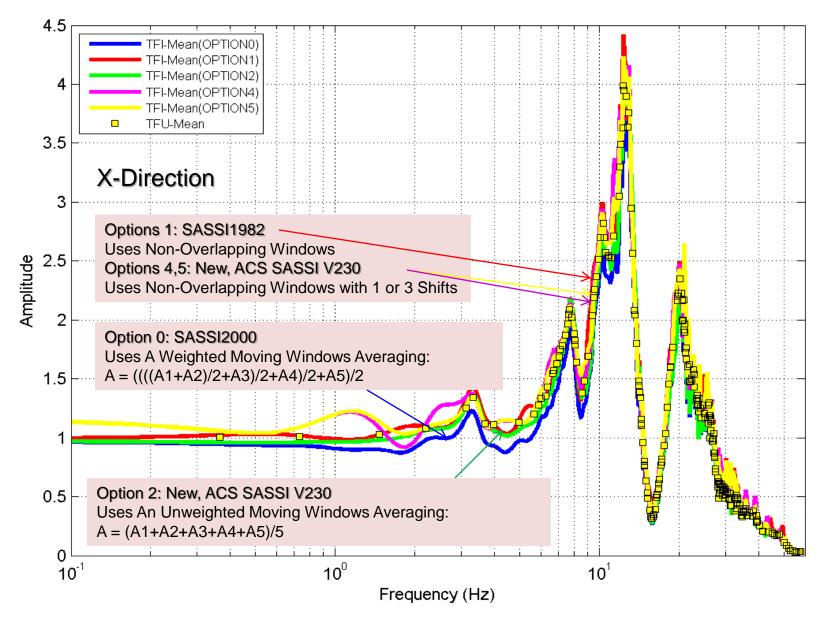
NI20 (PA1) -- XINPUT -- ATF at Node


NI20 (PA1)-- XINPUT -- RS at Node

²⁰¹⁹ Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

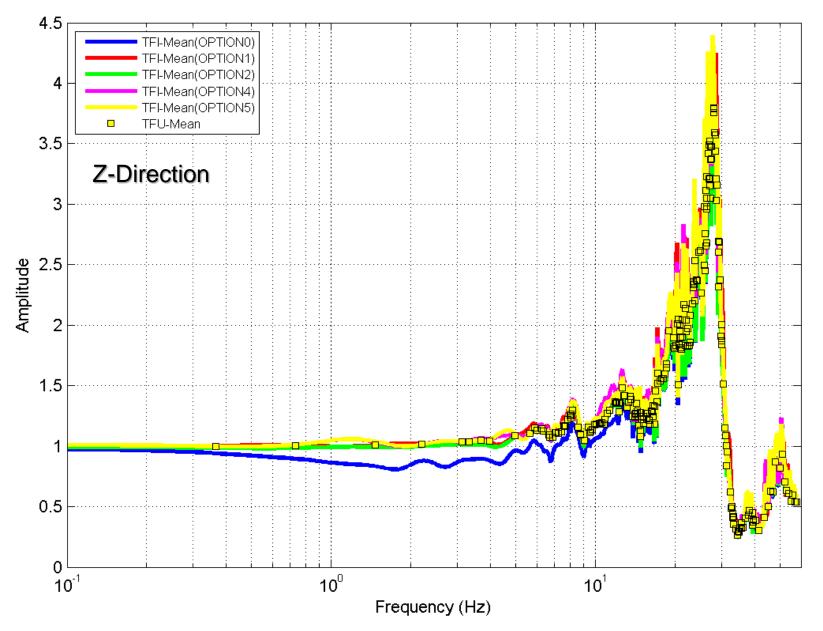

Computing Accelerations, ATF and RS (MOTION) Analysis Options EQUAKE | SOIL | SITE | POINT | HOUSE | FORCE | ANALYS MOTION | STRESS | RELDISP | AFWRITE | Operation Mode Type of Analysis Response Spectrum Data Baseline Correction SRSSTF.TXT 0.1 First Frequency Solution Seismic O No Correction 100 Last Frequency C Data Check C Foundation Vibration With Correction Total Number of Freq. Steps 300 -Output Control Damping Ratios Incoherent SRSS Output Only Transfer Functions Input 0.05 Save Complex Transfer Function 2 Interpolation Option **MOTION Module** Save Ell E 13 Phase Adjustment Acceleration Time History Data computes transfer Smoothing Parameter 0 8192 Total Duration to be Plotted 20 N Nr. of Fourier Components functions, TFU and TFI 0.005 Time Step of Control Motion -Nodal Output Data files, motions, ACC Node List Multiplication Factor • X • Y • 7 • XX • YY • 77 files, and response 0 Max. Value for Time Printed Plot of Transfer Function: listory spectra, RS at selected Save Time History of Requested Response First Record nodes, RS files. Plot Time History of Requested Response Last Record Plot Acceleration and Velocity R. S. Save Acceleration and Velocity R. S. Newmark-Hall X Title Print Maximum Requested Response Includes 7 TF interpolation algorithms and explicit input c:\ACSV23 File parameters for error smoothing & phase adjustment. Add Edit Delete File Contains Pa Convert Time History to Response Spectrum Post Processing Options Save TF in all points Restart for TF Select External Files Save ACC in all points Restart for ACC Retation De Input Time History Files Save RS in all points Saving Results, TFU, ACC and RS for Post-processing. Save Rotation for ANSYS V11. Restart is used for generating frames for contour, **CONTRRS.TXT** deformed shape plots and animations OK Cancel Help

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

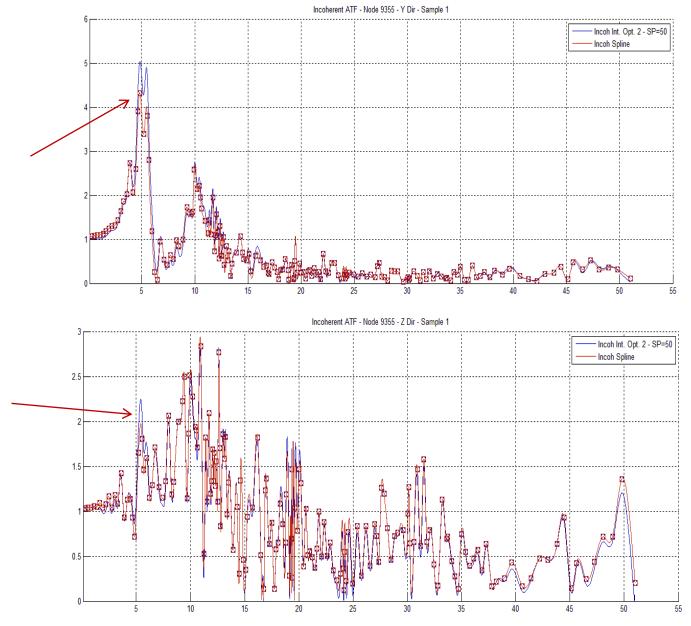

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

ATF Interpolation Error Smoothing Results for EPRI AP1000 Stick Model. Comparisons for 224 SSI Frequencies vs. 2048 Fourier Frequencies

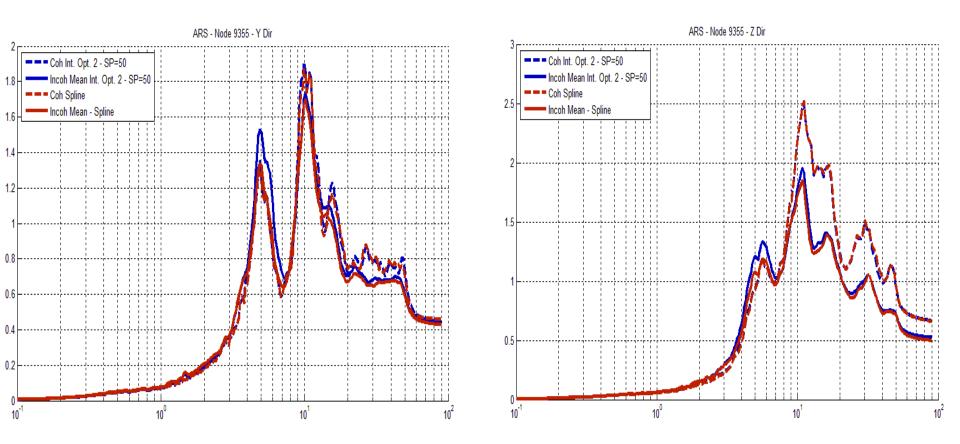
(Mean) Incoherent Interpolated ATF Using Different Interpolation Schemes


FLEXIBLE (SP10PA0, MODES=10)-- XINPUT -- ATF :

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.


(Mean) Incoherent Interpolated ATF Using Different Interpolation Schemes

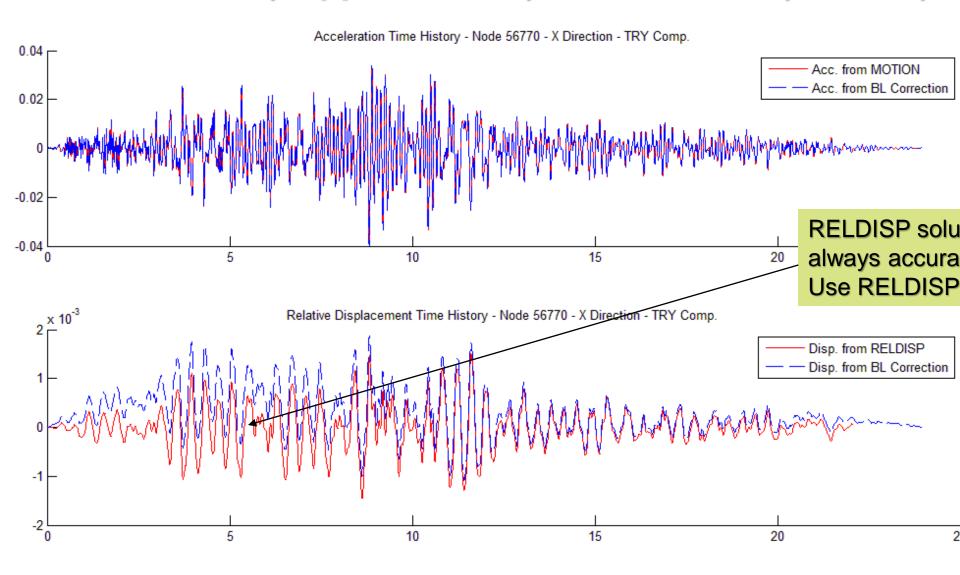
FLEXIBLE (SP10PA0, MODES=10)-- ZINPUT -- ATF



2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

Spline Interpolation Applied to SSI Simulations

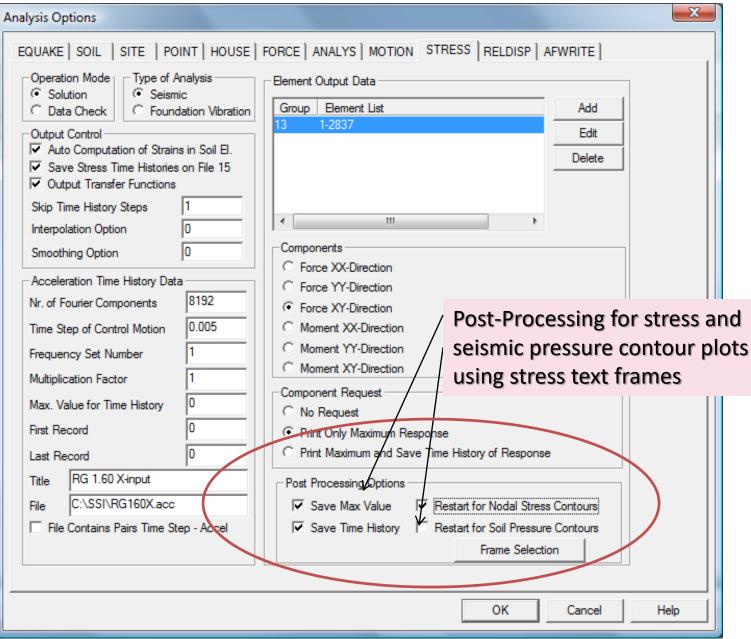
Spline Interpolation Applied to Incoherent SSI Simulation Approach

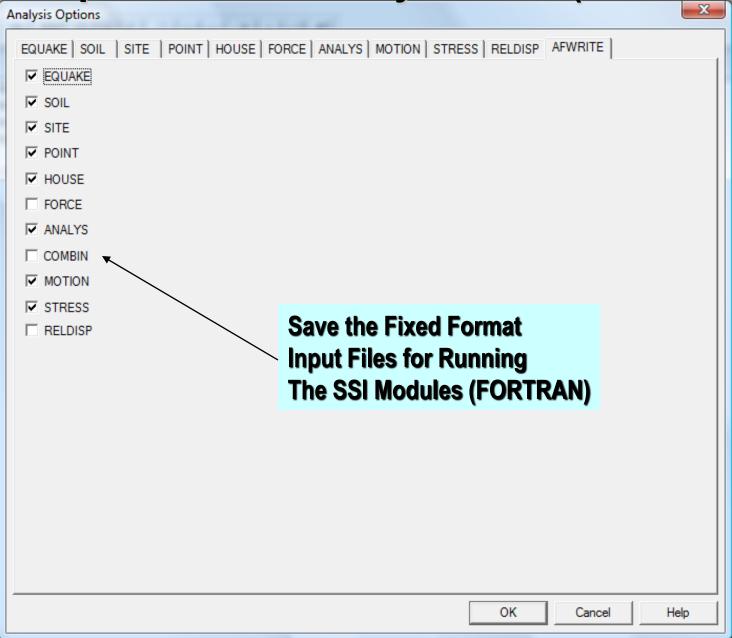

Generating ACC, TFU and RS Restart Frames

Operation Mode Type of Analysis Baseline Correction Image: Solution Image: Seismic Image: Seismic Image: Seismic Image: Data Check Image: Seismic Image: Seismic Image: Seismic Image: Data Check Image: Seismic Image: Seismic Image: Seismic	Response Spectrum Data First Frequency Last Frequency
Output Control Output Only Transfer Functions Incoherent SRSS Input Save Complex Transfer Function Interpolation Option 2	Total Number of Freq. Steps 300 Damping Ratios 0.05
Save FILE 13 1 Phase Adjustment 0 Total Duration to be Plotted 20 Smoothing Parameter 0	Acceleration Time History Data Nr. of Fourier Components 8192 Time Step of Control Motion 0.005
Nodal Output Data Node List	Multiplication Factor
Save Acceleration and Velocity R. S. Print Maximum Requested Response Add Edit Delete	Title Newmark-Hall X File C:\ACSV230\Demo_Problems\De
Convert Time History to Response Spectrum Select External Files Input Time History Files Save RS in all poin Save RS in all poin Save Rotation for	Ints Restart for TF Dints Restart for ACC Ints Restart for RS

Computing Relative Displacements (RELDISP)

Acceleration Time History Data Nr. of Fourier Components Time Step of Control Motion 0.005 Mutiplication Factor 0 Max. Value for Time History 1 Last Record 1 Last Record 3000 Title Newmark-Hall Spectrum File Drost Processing Option Save Relative Displacement in all nodes Restart for Frame Generation Saving Results, THD files, for Post-processing. Restart is used for generating text frames for deformed shape plots and animations	EQUAKE SOIL SITE POINT HOUSE FOR Reference Location and Direction 00000TR_X Complex TF File Name 00000TR_X Output Control Image: Complex TF Image: Save Rel Disp Complex TF	ORCE ANALYS MOTION STRESS RELDISP AFWRITE	Ε]
File D:\ssi\NEWMHX.ACC File Contains Pairs Time Step - Accel Add Edit Post Processing Option Save Relative Displacement in all nodes Restart for Frame Generation Saving Results, THD files, for Post-processing. Restart is used for generating text frames for deformed	Nr. of Fourier Components4096Time Step of Control Motion0.005Multiplication Factor0Max. Value for Time History0.1First Record1	Node Number X Y Z 245 X Y Z	computes transfer functions, TFD files, and motions, THD files for relative
Restart is used for generating text frames for deformed	File D:\ssi\NEWMHX.ACC		
		Restart is used for generating text frames for	


Relative Displacements Computed By Baseline Correction ("Approximate") and RELDISP ("Exact")


Computing Output Stresses (STRESS)

Analysis Options	A CONTRACT OF	x
EQUAKE SOIL SITE POINT HOUS	E FORCE ANALYS MOTION ST	RESS RELDISP AFWRITE
Operation Mode Solution Data Check Output Control Auto Computation of Strains in Soil El.	2 1-18	Add
Save Stress Time Histories on File 15	Save stress TFU and TFI files	
Skip Time History Steps 1 Interpolation Option 0 Smoothing Option 0	Components	STRESS Module Computes Stresses/Strains Forces/Moments in Selected Structural or Near-Field Soil Elements
Acceleration Time History Data Nr. of Fourier Components 4096 Time Step of Control Motion 0.005	C Force 2-Direction - Node I C Force 3-Direction - Node I C Moment Direction - Node I	© Force 3-Direction - Node J
Frequency Set Number 1 Multiplication Factor 0 Max Value for Time History 0.1	C Moment 2-Direction - Node I Moment 3-Direction Node I Component Request	
Max. Value for Time History 0.1 First Record 2 Last Record 3001	O No Request O Print Only Maximum Response O Print Maximum and Save Time	
Title Newmark-Hall Spectrum File D:\ssi\NEWMHX.ACC Image: File Contains Pairs Time Step - Accel		Restart for Nodal Stress Contours Restart for Soil Pressure Contours Frame Selection
		Saving Stress Results, THS for Post-processing. Restart is used for generating text frames for contour plots and animations for stresses and soil pressures.

New Stress Computation and Plotting Options

Save Inputs for SSI Analysis Run (AFWRITE)

Description of Text Files and Frames

Transfer Function (TF), Response Spectra (RS) and Time History (TH) Text Files for Post-Processing

RS	Response spectra data files generated by the motion module								
	Naming Scheme for TFU, TFI, TFD, ACC Files								
	Characters	1-5	Node Number						
	Characters	6-9	Translation (TR) or Rotational (R) degree of freedom						
	Characters	10-11	Damping ratio number						
TFU	Uninterpol	ated acceler	ation transfer functions v	vritten by the motion mo	odule and stress transfer functions				
TFI					Ile and stress transfer functions written by the stress module				
TFD			unctions generated by th	•					
THD			ory written by reldisp mo						
ACC			ry written by motion mo						
	Naming Sc	heme for Ac	celeration TFU, Accelera	tion TFI, TFD, THD, and /	ACC Files				
	Characters	1-5	Node Number						
	Characters	6-9	Translation (TR) or Rot	ational (R) degree of fre	eedom				
тн	Soil time h	istory for lay	ers						
	Naming Sc	heme							
	ACC***	Accelerati	on time history for soil la	yer ***	i.e. ACC001.TH is the acceleration time history for soil layer 1				
	SN***	Strain time	e history for soil layer ***	k	i.e. SN001.TH is the strain time history for soil layer 2				
	SS***	Stress time	e history for soil layer ***	k	i.e. SS001.TH is the stress time history for soil layer 3				
THS	Stress time	e history writ	ten by stress module						
	Naming Sc	heme for TH	S, stress TFU, and Stress	TFI					
	etype_gnu	m_enum_co	mp		e.g. BEAMS_012_00001_FXI.THS				
		etype =	element type						
gnum = group number			group number						
enum = element number									
	comp = stress component								
Frames.txt	Frames.txt			Post processing frames for stress and motion					
ELEMENT_CEN	ITER_ABS_MA	X_STRESSES	.тхт	List of maximum stress	ses for each element				
STATIC_SOIL_I	PRESSURES.TX	ст		Defines additional soil pressure (geological pressure) to be included in soil pressure frames					
SRSSTF.txt				SRSS option in motion	81				

Frame Files for Post-Processing

RS Frames N	aming Sch	eme						
RS##_freq_filenum				e.g. \RS\RS01_000.10_00001				
	## =	Dampin	Damping number					
			frequency					
	fnum =	Frame n	umber					
TFU Frames		heme						
	enum			e.g. \TFU\TFU_000.02_00001				
	freq =	•						
	fnum =	Frame n	umber					
ACC Frames	-	heme		e.g. \ACC\ACC_00.000_00001				
ACC_time_fi	lenum							
	time =	time						
	fnum =	Frame n	umber					
THD Frames	-	heme		e.g. \THD\THD_00.000_00001				
THD_time_fi	lenum							
	time =	time						
	fnum =	Frame n	umber					
Stress Frame	Naming S	cheme						
stress_time_	fnum_com	р		e.g. \NTRESS\stress_00.000_00001_sig				
	time =	time						
	fnum =	Frame n	umber					
	comp =	Stress Co	omponent					
		sig	Solids	Normal Stress				
			Shells	Membrane Stress				
		tau	Solids	Shear Stress				
			Shells	Membrane Shear				
		bdsig	Bending	Stress (shell elements only)				
	bdtau Bending Shear (shell elements only)							
Soil Pressure Frame Naming Scheme								
press_time_	press_time_fnum_typee.g. \SOILPRES\pres_00.000_00001_nod							
	time = time							
	fnum =	um = Frame number						
	type =	Element	Values or	Nodal Values				
		ele	Element	<u>9</u> 7	<u>, </u>			
		nod	d Nodal Values					

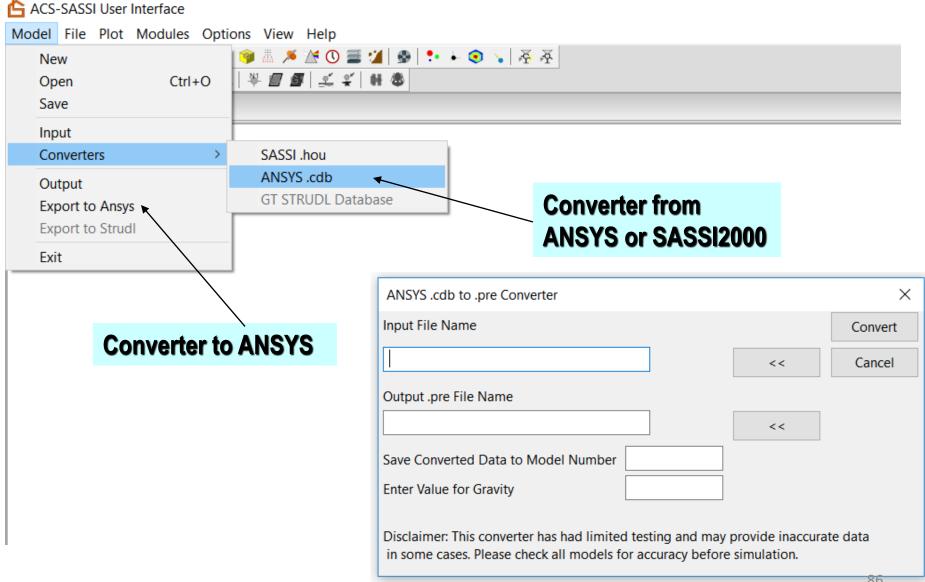
Frame Files for Post-Processing (cont')

Maximum V	Maximum Value Frames								
Stress									
stress_ABS_	stress_ABS_MAX_comp e.g. \NSTRESS\stress_ABS_MAX_sig								
	comp =	Stress Co	omponent						
		sig	Solids	Normal Stress					
			Shells	Membrane Stress					
	tau		Solids	Shear Stress					
			Shells	Membrane Shear					
		bdsig	Bending	Stress (shell elements only)					
		bdtau	Bending Shear (shell elements only)						
Soil Pressure	2								
press_ABS_I	MAX_type			e.g. \SOILPRES\pres_ABS_MAX_nod					
	type =	Element Values or Nodal Values							
		ele Element Values							
		nod Nodal Values							

SSI Response Post-Processing Options

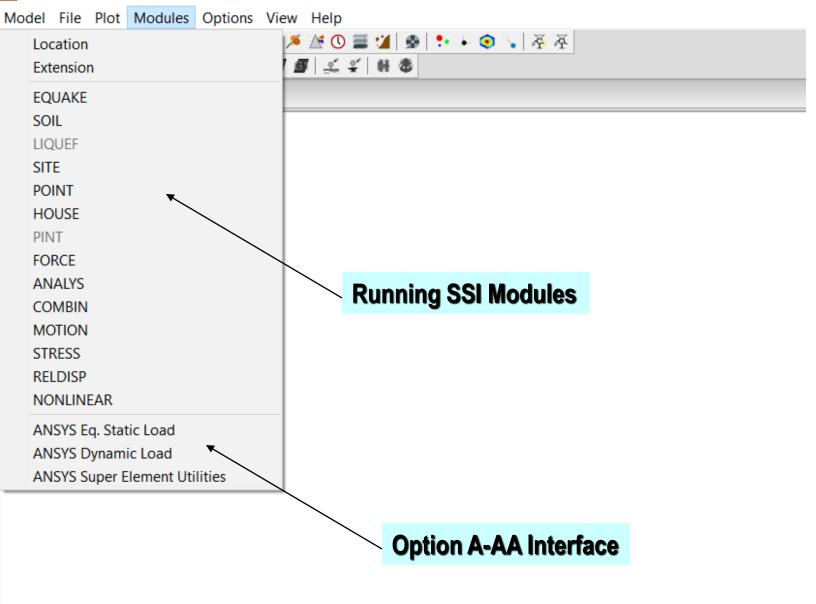
User Interface:

Binary Databases:


- Generate BDBs for each input direction; select flag for BDB
- Combine BDBs for three input direction using UI commands
- Use the XYZ combined BDB to extract frames at selected time steps or maximum values (text frame tables)
- A new UI command is designed for extracting selected time histories from BDB *included in the V3 January 2018 upgrade*

Text Files (.acc or .thd files):

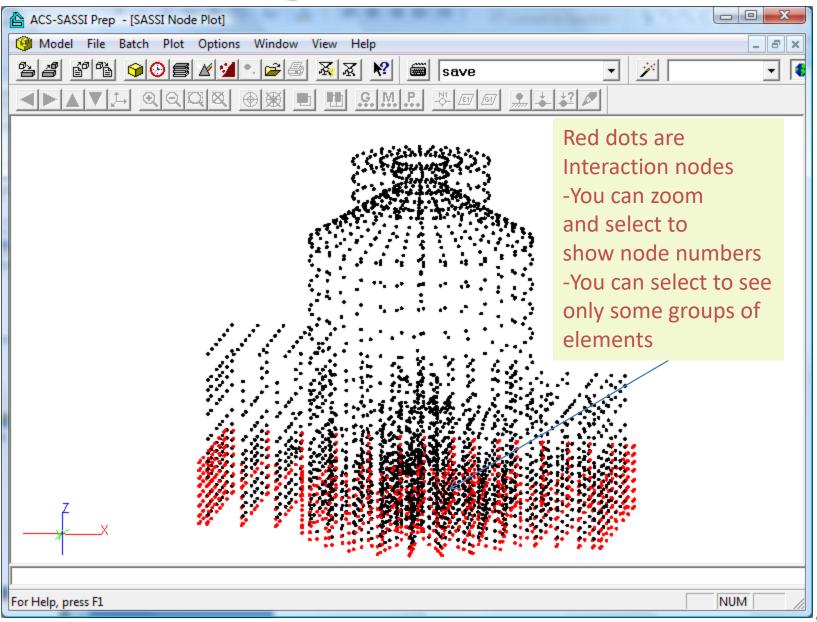
- Combine .acc or .thd node/dof history files using the ADDITION command, such as ADDITION,4,1,2,3 ; combine histories 1,2,3 for X, Y and Z inputs in the response combined history 4.


User Interface Menus for Input for Model, Analysis Run and Plotting

ACS SASSI Model Input File Capabilities

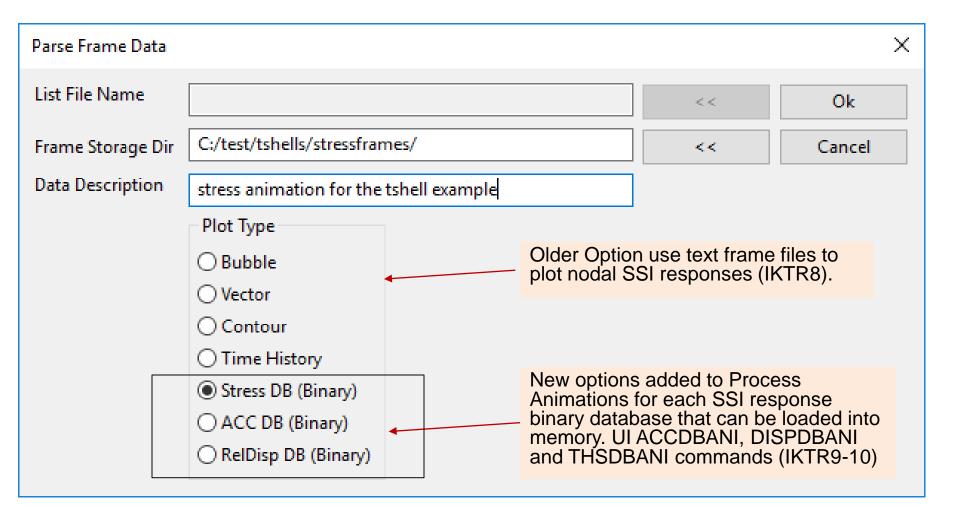
ACS SASSI SSI Analysis Capabilities

ACS-SASSI User Interface



²⁰¹⁹ Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

ACS SASSI Graphical Processing Capabilities


눰 ACS-SA	SSI User I	nterface						
Model Fi	le Plot	Modules	Optio	ns View	Help	C		
Mode	I.		>	🧐 🎄 🔎	24 🕔	۵ 🗐	i 🎾 💩 🔹 🖌 🥥 🝾 🖉 茶	
Cuts				₩ 📶 🕯	F 🔍 4	÷	H &	
Spect	rum TFU-	TFI						
Time	History		ł					
Soil La	ayers							
Soil P	roperties	▼	$\langle $					
Non U	Iniform So	oil Field						
Proces	ss Animat	ion						
Bubbl	e					 F 	Plot model, submodels,	
Vector	r							
Conto	ur		>			I	inputs, and SSI responses	
Defor	med Shap	be						
Defor	med Shap	be						

Checking SSI Interaction Nodes

²⁰¹⁹ Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

UI Processing for Node or Element Animation Using Text Frames or Binary Databases

Selected UI Commands for SSI Analysis, Modeling and Post-Processing

SETENV Command

SETENV,<mem>

<mem> - The Memory size limit that the fast solver is allowed to use in megabytes. It is suggested that user set the size limit at 90 - 95% of physical RAM on the system. If the user attempts to allocate more than 100% of physical memory the fast solver has shown sometime to return incorrect results.

This command shall be used after software installation when the UI is launched for the first time. Sets the environment variables for the fast solver modules. The command sets three environment variables in the users registry. The environment variables are local to each user account and are persistent once they have been set. This command should be run by each user account.

GETENV Command

GETENV

This command shows the environment variables for the fast solver and the values of those environment variables.

AFWRBAT Command

AFWRBAT,<splits>

<splits> - number of sections the frequency set will be split into.

The AFWRBAT command allows the user split a simulation across multiple systems by frequency set into multiple models each with a separate frequency subset in separate folders. The folders can then be transferred to different systems and batch files created by this command run the necessary modules, then the data from each model can be combined by another batch file created by this command.

The command uses model data defined by MDL command to determine the name and location of the new folders that are created.

CRITFREQ Command

CRITFREQ,<tol>,<minfilter>,<TF>,<Var>

<tol> - percentage difference between the TFU and TFI that will cause the frequency to be added to the result.

<minfilter> - percentage below the global maximum where differences between the
TFU and TFI should be ignored.

<TF> - name of the transfer function file for which the .TFI peak and .TFU values are compared.

<Var> - Variable name that includes the results of the critical frequency command application.

This command allows the user to identify automatically the frequencies where the interpolated ATF peaks are significantly different from the computed ATF values in the vicinity of the frequency of the interpolated ATF peak. These are identified frequencies should be added to the SSI input analysis. The user controls the results of this command with the <tol> and the <minfitler> argument. The full path name of the .TFU or .TFI files without these extensions should be included in the TF argument. The identified frequencies will be stored in the variable named in the last argument.

FRAMECOMBIN Command

FRAMECOMBIN,<op>,<num>,<InFile1>, ...,<InFileX>,<Outfile>

<op> - operation code controls the way frames are to be combine. = 0 - SRSS

- = 1 sum
- = 2 average
- <num> number of input frames to be combine.
- <Infile> full path of the input frame files.
- <Outfile> full path of output frame files.

Combine ASCII text frame files generated by MOTION, RELDISP or STRESS modules and combine them to make animations. This command requires the header of frame files to specify the number of rows columns in the frame file. This is written by default in the current ACS SASSI.

FRAMESEL Command

FRAMESEL,<tol>,<TimeHist>,<Var>

<tol> - Percentage of the global maximum below which local maximums will be ignored as critical frames <TimeHist> - Acceleration file to be processed <Var> - Variable Name to store the list of critical frames

This command allows the users to find local maximums/minimums in a time history and store these in a variable. Based on the list in the variable, the user can determine the critical frames or time steps.

Useful UI Commands for Checking FE Models and Improving Numerical Condition, Section-Cuts

Commands for building SSI and SSSI models: MERGESOIL, EXCAV, EXTRACTEXCAV, INTGEN, FIXEDINT, HINGED, EXCSTRCHK

Improving the FEA model numerical condition and speed/storage: FIXROT, FIXSHELL, FIXSOLID, FIXSPRING

Section-Cut Commands: CUTVOL, SLICE, CSECT, CALCPAR, CALCSECTHIST, etc. (see Demo 8)

Create Nonlinear Models, PANELIZE, PANELGEN, SHEAR, BBCGEN,...

SSI Model Checking UI Commands

	Command	Action
1	EXCSTRCHK	Checks excavation nodes for potential errors
	FIXEDINT	Find Fixed Interaction Nodes
	FREESPRING	Find Free Spring Nodes
	HINGED	Check model for possible hinged connections
	KINT	Find K node that are interaction nodes
	USED	Check and fix Unused nodes

EXCSTRCHK Command

EXCSTRCHK

This command checks if the Excavation interior nodes are common with the Structure basement nodes. This will be incorrect from a SASSI modeling point of view. A list detailing the shared nodes will be printed to the command history. The number of entries in the list is controlled by the Check Options break message number.

This command does not change the active model in any way.

EXCAV command creates an excavation model for a structural model that doesn't have an excavation

Example code to create an excavation model for a structural model (.pre).

Actm,1 INP, Example_model.pre EXCAV,2 ACTM,2 * Write .pre file for the excavation model 2 Write, Example_Excavation.pre **FIXROT** to automatically add the needed soft rotational springs to improve numerical conditioning for detailed flat SHELL models (for the Kirckhoff plate element the drilling degree of freedom has no stiffness associated with it, and therefore could produce poorly conditioned or unstable numerical models). Not required for the TSHELL elements.

FIXROT,<Stiff>.

Example code for fixing free shell drilling rotations in a FEA model.

Actm,1 Inp, Example_Model.pre *Add soft springs with overall stiffness 10 at the oblique SHELL nodes; FixRot,10 **HINGED** checks model to find all hinged connections between solids and shell and beams and beams and shells. Write warnings for hinged nodes.

These hinged connections could be potentially indicate incorrect FE modelling, since the node rotations from beams and shells are not transmitted to solids at the common nodes, and the node rotations from beams are not transmitted the in-plane shell rotations at the common nodes (the drilling dof equations have no stiffness terms by default)

FIXEDINT checks if there are interaction nodes that are fixed by mistake

Useful UI Commands for SSI and SSSI Model Building and Combination

Command	Action
EXCAV	Create an Excavation volume for a model
MERGE	Merge 2 models
MERGEGROUP	Merge 2 groups together
MERGEPANEL	Merge a Panel Model to the Solids and beams of the original model
MERGESOIL	Merge a Structural Model With a Matching Soil
ROTATE	Rotate the model around a point
SOILMESH	Create a soil mesh for the active model
TRANSLATE	Translate all nodes a specified distance
WELD	Combine nodes that share the same location

MERGESOIL,

<Struct>,<Soil>,[Mode],[StiffStiff],[StiffSoft],[SepLevel],[Mapping]

- This command is used to merge the structural and the excavation volume models together in a new
- active SSI FEA model.
- <Struct> Model Number of the Structure
- <Soil> Model Number of the Excavation volume
- [Mode] Merging nodes on the structure excavation interface
- = 0 Unbonded lateral foundation-soil interface with side solid
- = 1 Bonded lateral foundation-soil interface (default)
- = 2 Bonded foundation-soil interface using duplicate nodes connected by stiff springs

= 3 Unbonded foundation soil-interface using duplicate nodes connected by soft springs

- [StiffStiff] Stiff spring stiffness for Modes 2 and 4. (Default = 10^7)
- [StiffSoft] Soft spring stiffness for Modes 3. (Default = 10)

[SepLevel] - Global z-coordinate level for depth where soil separation occurs [Mapping] - This is mapping filename for the duplicate node merging

INTGEN to generate automatically interaction nodes for different substructuring approaches FV, FI-FSIN (SM), FI-EVBN (MSM) and Fast FV.

INTGEN,<type>,<skip> to generate the interaction nodes based on the selected SSI substructuringapproach. The excavation volume must be explicitly defined by the ETYPE command for options 1-3. If the ETYPE is left to default values, this command will not work.

<type> :Type of iteration node generation

= 1 for Embedded Foundation - Flexible Volume (FV)

2 for Embedded Foundation - Flexible Interface with Excavation Volume Boundary Nodes, denoted FI-EVBN or Modified Subtraction Method (MSM)
3 for Embedded Foundation - Flexible Interface with Foundation-Soil Interface Nodes, denoted FI-FSIN or Subtraction Method (SM)
4 for Surface Foundation (interaction nodes are only at the ground surface

level)

= 5 for FFV with repeated internal interaction node layers based on <skip>

Building SSI Model Example to Merge Structure and Excavation FE Models for SSI Analysis (also in Option AA)

It is assumed that the ground surface is at Z=0. and the FV method will be used

- *Convert ANSYS Structure.cdb in Model 1
- Actm,1
- Convert, ansys, struct.cdb, 32.2
- Etypegen,1
- Actm,2
- Convert, ansys, Soil.cdb, 32.2
- * Define excavation elements of type 2
- Etypegen,2
- * Create SSI model by combining Models 1 and 2 in Model 3
- Actm,3
- MergeSoil, 1, 2, 1, ,, , mappingfile.txt
- Groundelev, 0
- Intgen, 1

Using ACS SASSI User Interface (UI) Macros. Few Examples...See also Demo 3

- Perform fast repeated UI operations easily
- Post-Process SSI results (SRSS, averaging, time superposition by algebraic summation, etc.)
- Identify missing frequencies based on ATF or STF results, and build list of new frequencies to be added
- Generate Backbone Curves for Nonlinear SSI Analysis
 (Option NON)
- Automate the running of SSI Analysis

Macro Basic Functions

- Macros are loaded into the UI with the LOADMACRO command
- Macros are called with the MACRO command
- Input arguments for a macro are written in the form \$n\$, where n is the number of the argument, i.e. \$1\$ is the first input argument, \$2\$ is the second, etc.
 - In the example below, the macro call would look like macro,srss,.\XDIR\00001TR_X01.rs,.\YDIR\00001TR_X01.rs,.\Z DIR\00001TR_X01.rs,.\SRSS\00001TR_X01_SRSS.rs
 - From this example, the first argument is the X-Direction .rs file, the second is the Y-Direction .rs file, the third is the Z-Direction .rs file, and the last argument is the file to save the computed

Defining Variables for Efficient Post-Processing

- Defined in the ACS SASSI UI using the VAR and LOADVAR commands
- Can be viewed with VARLIST and SHOWVAR commands
- Reference in the ACS SASSI UI by the defined name preceded by @, i.e. @variablename[1]
 - The number within the brackets identifies the index number to use to access the values stored in a variable i.e. @name[1] for the first value, @name[2] for the second, etc.

FOREACH Command for Building Variable Loops

- The FOREACH command is extremely useful for post-processing SSI results for many nodes or elements
- Command syntax: FOREACH, variable,<command to be executed>
- The looped variable should appear in the command to be executed in the form of variable[#]
 - The [#] indicates that the specified variable is to be looped on
 - Only one variable can be looped on in a single FOREACH command
- When used with the MACRO command, the execution of operations such as computing SRSS for spectra or summation of time histories can be looped through for a list of nodes or elements

Nested Macros for Efficient Post-Processing

Macros can be nested to easily perform repeated operations. This example calls the nesting macro to pass file name information to the macro performing the SRSS operation. The nesting macro is passed file name information from the top level .pre file, looping through nodes to build file names to pass to the nesting macro with the FOREACH command.

Top Level .pre File Calling Nesting Macro

* Define Variables mdl,temp,<work folder>\Coherent\Post-Processing var,path,. loadvar,nodes,@Path[1]\Nodes.txt

* Load Macros loadmacro,srss,SRSS-macro.pre loadmacro,nestSRSS,Nested-SRSS.pre

* Combine Results foreach,nodes,macro,nestSRSS,@nodes[#],01,X,@path[1]

Macro Calling SRSS Macro (Nested-SRSS.pre)

* NEST SRSS

macro,srss,\$4\$\XDIR\\$1\$TR_\$3\$\$2\$.rs,\$4\$\YDIR\\$1\$TR_\$3\$\$2\$.rs, \$4\$\ZDIR\\$1\$TR_\$3\$\$2\$.rs,\$4\$\Combined\ISRS\\$1\$TR_\$3\$\$2\$.RS

Macro to Perform SRSS Calculation (SRSS-macro.pre)

* SRSS MACRO READSPEC,\$1\$,1,1 READSPEC,\$2\$,1,2 READSPEC,\$3\$,1,3 SRSS,4,1,2,3 WRITESPEC,\$4\$,4

Example of UI Macros for Adding Acceleration Histories

Macros can be nested to easily perform repeated operations. This example calls the nesting macro to pass file name information to the macro performing the ADDITION operation.

The nesting macro is passed file name information from the top level .pre file, looping through nodes to build file names to pass to the nesting macro with the FOREACH command.

	Define Variables ndl,temp, <work folder="">\Coherent\Post-Processing /ar,path,.</work>								
	loadvar,nodes,@Path[1]\Nodes.txt * Load Macros								
	loadmacro,ADD,ADD-Macro.pre								
	loadmacro,NESTADD,Nested-ADD.pre								
	ioadinacio, NEO IADD, Nested-ADD.pre								
	* Combine Results								
	foreach,nodes,macro,nestADD,@nodes[#],X,@path[1]								
l									
	NESTADD Macro Calling ADD Macro (Nested ADD pro)								
	NESTADD Macro Calling ADD Macro (Nested-ADD.pre)								
	* NESTADD Macro								
	► macro,ADD,\$3\$\XDIR\\$1\$TR_\$2\$.acc,\$3\$\YDIR\\$1\$TR_\$2\$.rs,\$3\$\ZDI								
	R\\$1\$TR_\$2\$.acc,\$4\$\Combined\ISRS\\$1\$TR_\$2\$.acc								
	ADD Macro for ADDITION Calculations (ADD-Macro.pre)								
	* ADD Macro								
	READTH,\$1\$,0,1								
	READTH,\$2\$,0,2								
	READTH,\$3\$,0,3								
	ADDITION,4,1,2,3								
	WRITETH,\$4\$,4								
	ννι τιι μ ιι,ψτψ,τ								

Top Level .pre File Calling Nesting Macro

Nodes.txt

09201

09202

09204

09205

09207

09209

09210 09211

09212 09213

09214

09215 09233

09960

Combination of ISRS, ACC, and THD Files for Incoherent SSI Analysis (Combine_Results.pre)

* Combine_Results.pre

* Macro to run SRSS and Average for ISRS, and time history combination for * THD, ACC, and THS files

* Define Variables

mdl,temp,<work directory>\Incoherent\Post-Processing var,path,.

loadvar,xnodes,@Path[1]\XDIR_Nodes.txt loadvar,ynodes,@Path[1]\YDIR_Nodes.txt loadvar,znodes,@Path[1]\ZDIR_Nodes.txt loadvar,samples,@Path[1]\Samples.txt

* Load Macros loadmacro,srss,SRSS-macro.pre loadmacro,add,Addition-macro.pre loadmacro,mean,Average-macro.pre

loadmacro,xnestsrssfor,Nested-SRSS-foreach-X.pre loadmacro,ynestsrssfor,Nested-SRSS-foreach-Y.pre loadmacro,znestsrssfor,Nested-SRSS-foreach-Z.pre

loadmacro,xnestaddaccfor,Nested-Add-ACC-foreach-X.pre loadmacro,ynestaddaccfor,Nested-Add-ACC-foreach-Y.pre loadmacro,znestaddaccfor,Nested-Add-ACC-foreach-Z.pre loadmacro,xnestaddthdfor,Nested-Add-THD-foreach-X.pre loadmacro,ynestaddthdfor,Nested-Add-THD-foreach-Y.pre loadmacro,znestaddthdfor,Nested-Add-THD-foreach-Z.pre

loadmacro,nestSRSS,Nested-SRSS.pre loadmacro,nestAddACC,Nested-Add-ACC.pre loadmacro,nestAddTHD,Nested-Add-THD.pre

* Macro continued

* Create Combined Folders for Each Sample foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined\ISRS foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined\THD foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined\ACC

* Calculate SRSS for ISRS for Each Sample foreach,samples,macro,xnestsrssfor,@samples[#] foreach,samples,macro,ynestsrssfor,@samples[#] foreach,samples,macro,znestsrssfor,@samples[#]

* Calculate Sum for ACC for Each Sample foreach,samples,macro,xnestaddaccfor,@samples[#] foreach,samples,macro,ynestaddaccfor,@samples[#] foreach,samples,macro,znestaddaccfor,@samples[#]

Combination of ISRS, ACC, and THD Files for Incoherent SSI Analysis (Combine_Results.pre)

* Calculate Sum for THD for Each Sample foreach,samples,macro,xnestaddthdfor,@samples[#] foreach,samples,macro,ynestaddthdfor,@samples[#] foreach,samples,macro,znestaddthdfor,@samples[#]

* Calculate Mean for Each Node mkdir,.\Mean foreach,xnodes,macro,mean,@path[1],@xnodes[#],X,01 foreach,ynodes,macro,mean,@path[1],@ynodes[#],Y,01 foreach,znodes,macro,mean,@path[1],@znodes[#],Z,01

Macros Loaded in .pre From Previous Slide

* Addition-Macro.pre for Add							
Time History for 3 Directions READTH, \$1\$,0,1 READTH, \$2\$,0,2 READTH, \$3\$,0,3	<pre>* Nested-SRSS.pre macro,srss,\$4\$\XDIR\\$1\$TR_\$3\$\$2\$.rs,\$4\$\YDIR\\$1\$TR_\$3\$\$2\$.rs,\$4\$\ ZDIR\\$1\$TR_\$3\$\$2\$.rs,\$4\$\Combined\ISRS\\$1\$TR_\$3\$\$2\$.RS</pre>						
ADDITION, 4, 1, 2, 3							
WRITETH, \$4\$, 4	* Nested-SRSS-foreach-X.pre						
* SRSS-Macro.pre for SRSS	<pre>foreach,xnodes,macro,nestSRSS,@xnodes[#],01,X,@path[1]\Sample_\$1\$</pre>						
READSPEC, \$1\$, 1, 1							
READSPEC, \$2\$, 1, 2	* Nested-Add-ACC-foreach-X	K.pre					
READSPEC, \$3\$, 1, 3	foreach, xnodes, macro, nestA		.@path[1]\Sample \$1\$				
SRSS, 4, 1, 2, 3			, o <u>r</u>				
WRITESPEC, \$4\$, 4							
]		1				
<pre>* Average-Macro.pre for Average READSPEC,\$1\$\Sample_1\Combined\? READSPEC,\$1\$\Sample_2\Combined\? READSPEC,\$1\$\Sample_3\Combined\? READSPEC,\$1\$\Sample_4\Combined\? READSPEC,\$1\$\Sample_5\Combined\? READSPEC,\$1\$\Sample_6\Combined\? READSPEC,\$1\$\Sample_7\Combined\? READSPEC,\$1\$\Sample_8\Combined\? READSPEC,\$1\$\Sample_9\Combined\? READSPEC,\$1\$\Sample_10\Combined\? READSPEC,\$1\$\Sample_11\Combined\? READSPEC,\$1\$\Sample_12\Combined\? READSPEC,\$1\$\Sample_13\Combined\? READSPEC,\$1\$\Sample_14\Combined\? READSPEC,\$1\$\Sample_15\Combined\?</pre>	ISRS\\$2\$TR_\$3\$\$4\$.RS,1,1 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,2 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,3 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,3 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,4 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,5 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,6 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,7 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,7 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,8 ISRS\\$2\$TR_\$3\$\$4\$.RS,1,9 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,10 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,11 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,12 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,13 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,14	The THS, THD, a nested macros for structure to the N and Nested-SRS	llow a similar ested-SRSS.pre				
READSPEC, \$1\$\Sample_16\Combined` READSPEC, \$1\$\Sample_17\Combined`	\ISRS\\$2\$TR_\$3\$\$4\$.RS,1,16 \ISRS\\$2\$TR_\$3\$\$4\$.RS,1,17						
READSPEC, \$1\$\Sample_18\Combined`	\ISRS\\$2\$TR_\$3\$\$4\$.RS,1,18						
READSPEC, \$1\$\Sample_19\Combined`	—						
READSPEC, \$1\$\Sample_20\Combined	—						
AVERAGE, 21, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10	,11,12,13,14,15,16,17,18,19,20)	114				
WRITESPEC, \$1\$\Mean\\$2\$TR_\$3654&	ppySight of Ghiocel Predictive Technologies,	Inc., All Right Reserved.					

Combination of THS Files for Incoherent Analysis

* Define Variables mdl,temp,<work directory>\Post-Processing var,path,. loadvar,thslist,@path[1]\ths_list.txt loadvar,samples,@Path[1]\Samples.txt

* Load Macros loadmacro,add,Addition-macro.pre loadmacro,nestaddthsfor,Nested-Add-THS-foreach.pre loadmacro,nestAddTHS,Nested-Add-THS.pre

* Create Combined Folders for Each Sample
foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined
foreach,samples,mkdir,@Path[1]\Sample_@samples[#]\Combined\THS

* Calculate Sum for THS for Each Sample
foreach,samples,macro,nestaddthsfor,@samples[#]

* Addition-Macro.pre for Add Time History for 3 Directions READTH,\$1\$,0,1 READTH,\$2\$,0,2 READTH,\$3\$,0,3 ADDITION,4,1,2,3 WRITETH,\$4\$,4

* Nested-Add-THS-foreach.pre
foreach,thslist,macro,nestAddTHS,@path[1]\Sample_\$1\$,@thslist[#]

* Nested-Add-THS.pre
macro,add,\$1\$\XDIR\\$2\$,\$1\$\YDIR\\$2\$,\$1\$\ZDIR\\$2\$,\$1\$\Combined\THS\\$2\$

* Nested-Add-THS.pre

macro,add,\$1\$\XDIR\\$2\$,\$1\$\YDIR\\$2\$,\$1\$\ZDIR\\$2\$,\$1\$\Combined\THS\\$2\$

THS_list.txt

BEAMS_002_00001_FXI.THS BEAMS_002_00001_FXJ.THS BEAMS_002_00001_FYI.THS BEAMS_002_00001_FYJ.THS BEAMS_002_00001_FZI.THS BEAMS_002_00001_FZJ.THS BEAMS_002_00001_MXI.THS BEAMS_002_00001_MXJ.THS BEAMS_002_00001_MYJ.THS BEAMS_002_00001_MZJ.THS BEAMS_002_00001_MZJ.THS BEAMS_002_00001_MZJ.THS

BEAMS_011_00095_FXI.THS BEAMS_011_00095_FXJ.THS BEAMS_011_00095_FYJ.THS BEAMS_011_00095_FYJ.THS BEAMS_011_00095_FZJ.THS BEAMS_011_00095_FZJ.THS BEAMS_011_00095_MXI.THS BEAMS_011_00095_MYJ.THS BEAMS_011_00095_MYJ.THS BEAMS_011_00095_MZJ.THS

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

Variables Loaded in Combine_Results.pre

XDIR_Nodes.txt	YDIR_Nodes.txt	ZDIR_Nodes.txt	Samples.txt
09201	09201	09201	1
09202	09202	09202	2
09203	09203	09203	3
09204	09204	09204	4
09205	09205	09205	5
09206	09206	09206	6
09207	09207	09207	7
09208	09208	09208	8
09209	09209	09209	9
09210	09210	09210	10
09211	09211	09211	11
09212	09212	09212	12
09213	09213	09213	13
09214	09214	09214	14
09215	09215	09215	15
09233	09233	09233	16
09960	09960	09301	17
		09302	18
		09303	19
		09304	20
		09305	
		09306	
		09307	
		09308	
		09309	
		09310	
		09311	
		09312	
		09313	
		09314	
		09315	
		09316	

09316 2019 Copyright of Ghiocel Predictive Jg ന്നologies, Inc., All Right Reserved.

Macro for Finding Additional Frequencies for Improving ATF and STF Interpolation Errors

* Modify path var to location of the demo directory var,path,C:ACSV300\Demo_Problems\demo3\ var,dirs,@path[1]\TFU-TFI mdl,,@path[1] loadvar,TF,tflist.txt mdl,,@dirs[1] var,FREQ foreach,TF,CRITFREQ,90,50,@TF[#],FREQ reduceset,FREQ,FLOAT showvar,FREQ

Fast Post-Processing of SSI Response Time Histories Using UI Commands for Binary Databases

MOTION Analysis Options

	Analysis Options	×
	EQUAKE SOIL SITE POINT HOUSE FORCE ANALYS MOTION	STRESS RELDISP NONLINEAR AFWRITE
	Operation Mode Type of Analysis Baseline Correction 	Response Spectrum Data First Frequency 1 Last Frequency 8192
	Output Control Output Only Transfer Functions Save Complex Transfer Functions Save FILE 12 or FILE 13 O Interpolation Option Interpolation Option	Total Number of Freq. Steps 32 Damping Ratios
	Total Duration to be Plotted 0 Smoothing Parameter 1	Acceleration Time History Data Nr. of Fourier Components 8192
	Nodal Output	Time Step of Control Motion 0.005
	Node List	Multiplication Factor 1 Max Value for Time History 0
	Printed Plot of Transfer Function	First Record 1
Save bina	ry database added to the options.	Last Record 5000
		Title acc_X_8192 File C:/test/tshell/acc_X_8192.acc
	input direction the Binary DB name will be aname will be ModeIname_ACC.bin	File Contains Pairs Time Step - Accel.
	Convert Time History to Response Spectrum Post Processing Options Select External Files Save TF in All Points Input Time History Files Save RCC in All Points Save RS in All Points Save Rotation for Ansys 1	Restart for TF Restart for ACC Restart for RS
	Binary Output Option Save Binary Database	
	2019 Copyright of Ghiocel I Technologies, Inc., All Right	

Analysis Options RELDISP	Analysis Options (TFI Text Files) ×
EQUAKE SOIL SITE POINT HOUS	SE FORCE ANALYS MOTION STRESS RELDISP NONLINEAR AFWRITE
Reldisp Input Format	
TFI ASCII O TFI Binary	
Reference Location and Direction	
Complex TF File Name	Input Direction
Reference Node ID 0	
Output Control	
Save Rel Disp Complex TF	
Acceleration Time History Data	Nodal Output Data
Nr. of Fourier Components 0	Node N X Y Z XX YY ZZ
Time Step of Control Motion0Multiplication Factor0	Save binary database added to the options
Max Value for Time History 0	
First Record 0	For each input direction the Binary DB name will
Title	Modelname_TR_X_THD.bin
File	Modelname_TR_Y_THD.bin
File Contains Pairs Time Step - Accel.	Modelname_TR_Z_THD.bin
Binary Output Option Post Processin	g Options
No Binary Save Relation	ive Displacement in All Nodes Restart For Frame Generation
O TFD Binary Save Rotat	ions for ANSYS
THD Binary	
	Ok Cancel

Analysis Options RELDISP Analysis Options (TFI Binary Files)

					-	-		-			1
EQUAKE SOIL SIT	e point	HOUSE	FORCE	ANALYS	MOTION	STRESS	RELDISP	NONLINEAR	AFWRITE		
Reldisp Input Format											
⊖ TFI ASCII	inary										
Reference Location ar	nd Direction	n									
Complex TF File Name					Input	Direction					
	0										
Reference Node ID											
Output Control											
Save Rel Disp Com	plex TF										
Acceleration Time His	tory Data		Nodal	Output Dat	а						
Nr. of Fourier Compor	nents 0)	Node	N X Y	Z XX Y	Y ZZ					
Time Step of Control	Motion 0)		So	vo hing	n dat	abaaa	addad to	the opt	iono	
Multiplication Factor	0)		Sa		ary ual	abase	added to	o the opt	10115	
Max Value for Time H	listory 0)									
First Record	0)		Foi	⁻ each	input o	directio	n the Bir	nary DB	name	will b
Last Record	0)		Mo	delna	me Tl	HD.bin		-		
Title			A	dd		_					
File											
File Contains Pairs	Time Step	- Accel.									
Binary Output Option		ocessing (-								
No Binary				nent in All I	Nodes	Restart Fo	r Frame Ger	neration			
O TFD Binary	Sav	e Rotation	ns for ANS	YS							
CATHD Binary											
									Const		
								Ok	Cancel		

STRESS Analysis Options

Analysis Options	×
EQUAKE SOIL SITE POINT HOUSE	FORCE ANALYS MOTION STRESS RELDISP NONLINEAR AFWRITE
Operation Mod Type of Analysis	Element Output Data
Solution	Group Element List Output Code Add
O Data Check O Foundation Vibration	10 1-28 0000000000 Edit
Output Control	Delete
Auto Computation of Strains in Soil El.	
Save Stress Time Histories	
Output Transfer Function	< > > Components
	Force NXX Moment MYY
Interpolation Option	O Force NYY O Moment MXY
Smoothing Option 0	O Force NXY
Acceleration Time History Data	○ Force QXZ
Nr. of Fourier Components 8192	Save binary database added to the options
Time Step of Control Motion 0.005	Comment MXX Element Output Components are different for thick
Multiplication Factor 1	Component Request
Max Value for Time History 0	No Request shells (8 components instead of 6 components)
First Record 1	OPrint Only Maximum For each input direction the Binary DB name will be
Last Record 5000	Binary DB name will be Modelname STRESS bin
Title acc_X_8192	Post Processing Options
File C:/test/tshell/acc_X_8192.acc	Save Max Value Restart for Nodal Stress Contours
File Contains Pairs Time Step - Accel.	Frame Selection
Binary Processing Option	
Save Binary Database	Section Cut Options
-	Save Time History
	2019 Copyright of Ghiocel Predictive122Technologies, Inc., All Right Reserved.OkCancel

BINOUT Command BINOUT,[mot],[str],[reldisp]

BINOUT command sets the binary options for the inputs of the SSI modules such as MOTION, RELDISP and STRESS. If an argument is left blank the value of the associated flag remains unchanged

- MOTION nodal acceleration history binary database
 - 0 Do not write database
 - 1 Write binary database
- STRESS the element stress/force/moment history binary database
 - 0 Do not write database
 - 1 Write binary database
- RELDISP nodal displacement history binary database
 - 0 Do not write database
 - 1 Not used in this version
 - 2 Write binary database

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

COMBACCDB Command

COMBACCDB,<Xfile>,<Yfile>,<Zfile>,<Comb>

Combine *three acceleration history binary databases* for X, Y and Z seismic input into a single database.

- •Xfile full path name of the x direction binary database
- •Yfile full path name of the y direction binary database
- •Zfile full path name of the z direction binary database
- •Comb full path name of combined direction binary database

COMBDISPDB Command

three displacement history binary databases

COMBTHSDB Command

Three element stress history binary databases

LOADACCDB Command

LOADACCDB,<file>

Load the MOTION created acceleration history binary database into the UI memory. Only a single acceleration binary database can be loaded into the UI memory at a time

•file - full path name of binary acceleration database

LOADDISPDB Command

Load the RELDISP created displacement history binary database

LOADTHSDB Command

Load the STRESS created element stress history binary database

ACCDBANI Command

ACCDBANI,<dir>,[label]

Create the SSI model animation from the nodal acceleration binary database that is loaded in the UI memory •dir – work directory for the animation files. •label – description label of the animation data. This label is stored in the animation database under Process Animation, and is used to identify the selected animation file when the animation data is loaded/reloaded

DISPDBANI Command

Create the SSI model animation from the nodal displacement binary database

THSDBANI Command

Create the SSI model animation from the element stress binary database

MAXDBFRAME Command

MAXDBFRAME,<Type>,[dir]

This command will find the maximum component values of for a binary database loaded into UI memory. The data will be written in a binary database file located in either the working directory or an user defined directory.

- •Type Database used to make the frame
 - THS Stress
 - DISP Displacement
 - ACC Acceleration

•dir - directory where the frame file will be written. (default: current working directory)

BINSTRTBL Command

BINSTRTBL,<group>,<EVar>,<file>,[step]

Create a text table format for selected stresses.

Gr. I	Elem.	SXX	SYY	TXY	MXX	MYY	MXY
34	1	0.0619	1.3769	1.7051	0.2896	0.2343	0.3228
34	2	0.0092	1.6048	2.6930	0.2101	0.8928	0.1681
34	3	0.1953	1.0696	2.6461	0.5233	0.8652	0.1771
34	4	0.1861	0.7625	2.1855	0.2927	1.1031	0.1119
34	5	0.0589	0.8005	4.2785	0.5619	1.8940	0.0472
34	6	0.0849	0.7012	4.9323	0.8285	1.8190	0.1373
34	7	0.0262	0.6604	3.4275	0.6116	0.2215	0.4655
34	8	0.0329	0.4823	1.7195	0.2640	1.7506	0.5377
34	9	0.0498	0.7906	1.7139	0.7083	1.3001	0.2326
34	10	0.0864	0.5886	2.4700	0.5667	0.5384	0.1734

The 1st line of the file will be column labels for each column. Each subsequent line will be the Group and element number then each component stress for that element.

If the step argument is left blank or set to -1 the Maximum values of each component will be written to the table. This Maximum is the absolute maximum for the component.

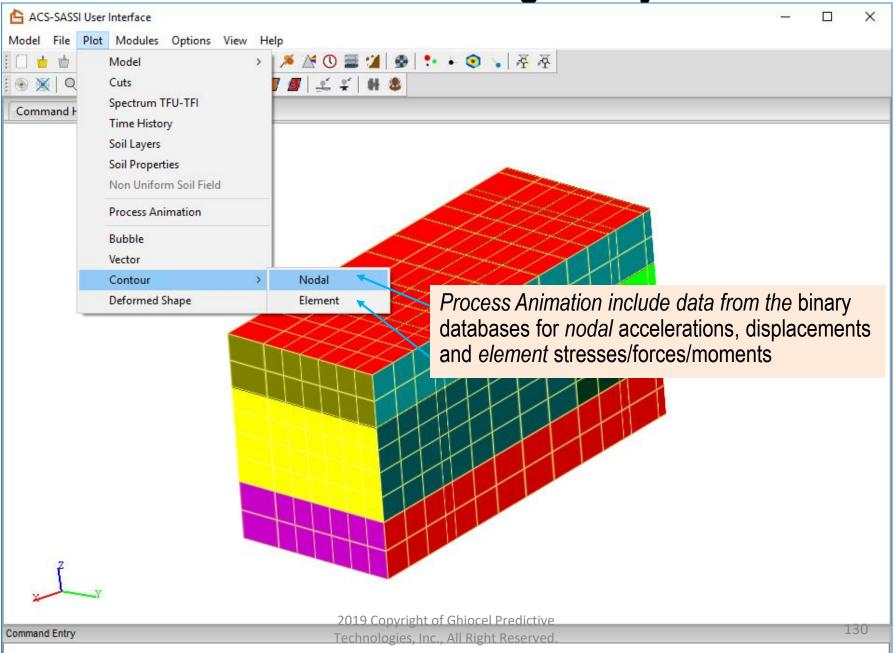
UI Extracting STRESS Maximum Element Outputs

LOADTHSDB,C:\ACSV300\DEMO_PROBLEMS\DEMO9\XYZ_Analysis\STRESS\Combined\THS\AB_SHEAR_NL_STRESS.BIN Database read took 3.906000 Seconds

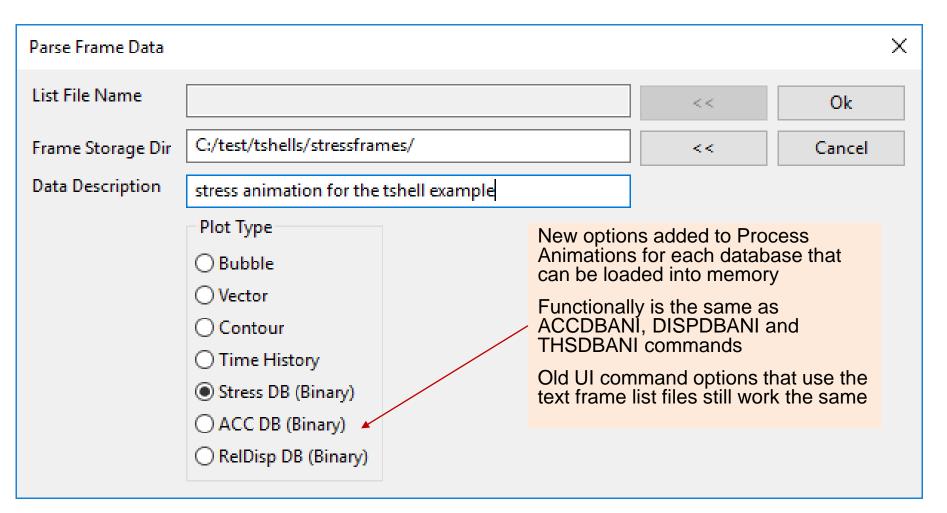
LOADVAR,elist,C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\element_output_list.txt

Variable Loaded Sucessfully from file

BINSTRTBL, 34, elist, 1, C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS_MAX.txt


Table File : C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS_MAX.txt written

Gr. El	em.	SXX	SYY	TXY	MXX	MYY	MXY
34	1	0.0619	1.3769	1.7051	0.2896	0.2343	0.3228
34	2	0.0092	1.6048	2.6930	0.2101	0.8928	0.1681
34	3	0.1953	1.0696	2.6461	0.5233	0.8652	0.1771
34	4	0.1861	0.7625	2.1855	0.2927	1.1031	0.1119
34	5	0.0589	0.8005	4.2785	0.5619	1.8940	0.0472
34	6	0.0849	0.7012	4.9323	0.8285	1.8190	0.1373
34	7	0.0262	0.6604	3.4275	0.6116	0.2215	0.4655
34	8	0.0329	0.4823	1.7195	0.2640	1.7506	0.5377
34	9	0.0498	0.7906	1.7139	0.7083	1.3001	0.2326
34	10	0.0864	0.5886	2.4700	0.5667	0.5384	0.1734


2019 Copyright of Ghiocel Predictive

Technologies, Inc., All Right Reserved.

UI Plot Nodal Contours Using Binary Databases

UI Processing for Node or Element Animation Frame Lists for ACC, THD and THS Histories

Plotting STRESS History of Max Element Outputs

INPUT FILE REACHED EOF, INPUT SWITCHED TO KEYBOARD

LOADTHSDB,C:\ACSV300\DEMO_PROBLEMS\DEMO9\XYZ_Analysis\STRESS\Combined\THS\AB_SHEAR_NL_STRESS.BIN

Database read took 7.110000 Seconds

LOADVAR,elist,C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\element_output_list.txt

Variable Loaded Sucessfully from file

MAXDBFRAME, THS, C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS\Combined\THS\Max_Frame_Contour

1-10649

Max Frame added user interface animation database

THSDBANI,C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS\Combined\THS\All_Frame_Contour

🔓 ACS	-SAS	SI Us	er In	Load Frame Data ×	
Model				Select From Database	
Model Cuts Spectrum TFU-TFI Time History		>	+ A Mi ry	Description Animation Dire Type Fra Stress Max Frame for C:\ACSV300\De Ele 1 Stress Contours for AB C:\ACSV300\De Ele 106 Stress Max Frame for C:\ACSV300\De Ele 1 Remove Animation Edit Description Edit Description	500.00000 >= 375.00000
Soil Layers Soil Properties Non Uniform Soil Fie Process Animation	eld		TEN F pe Il ****'c s	Animation Control Frame Selection Start 1 Erid 10649 Stride 1 Data Range Data Column 5 Min 0.000000 Max 500 Use Defined Range	250.00000
Bubble Vector				Ok Cancel	125.00000
Contour		>	1	Nodal	0.00000 <=
Deformed Shape			l	Element 2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.	132

Post-Processing SSI Responses Using Binary Databases Described in Detail in Demo 13

* **Define Variable for Working Directory** VAR,PATH,C:\ACSV300\Demo_Problems\Demo13

* Combining Three-Direction Response RELDISP Displacement Binary Databases for Each Seismic Input

COMBDISPDIR,@PATH[1]\XDIR\ABShear_TR_X_thd.bin,@PATH[1]\XDIR\ABShear_TR_Y_thd.bin,@P ATH[1]\XDIR\ABShear_TR_Z_thd.bin,@PATH[1]\XDIR\ABShear_thd.bin COMBDISPDIR,@PATH[1]\YDIR\ABShear_TR_X_thd.bin,@PATH[1]\YDIR\ABShear_TR_Y_thd.bin,@P ATH[1]\YDIR\ABShear_TR_Z_thd.bin,@PATH[1]\YDIR\ABShear_thd.bin COMBDISPDIR,@PATH[1]\ZDIR\ABShear_TR_X_thd.bin,@PATH[1]\ZDIR\ABShear_TR_Y_thd.bin,@P ATH[1]\ZDIR\ABShear_TR_Z_thd.bin,@PATH[1]\ZDIR\ABShear_thd.bin

* Combining SSI Responses Computed for X, Y and Z Inputs Using Binary Databases for MOTION, RELDISP and STRESS

COMBACCDB,@PATH[1]\XDIR\ABShear_ACC.bin,@PATH[1]\YDIR\ABShear_ACC.bin,@PATH[1]\ZDI R\ABShear_ACC.bin,@PATH[1]\Combined\ABShear_ACC.bin,0 COMBDISPDB,@PATH[1]\XDIR\ABShear_thd.bin,@PATH[1]\YDIR\ABShear_thd.bin,@PATH[1]\ZDIR\A BShear_thd.bin,@PATH[1]\Combined\ABShear_thd.bin,0 COMBTHSDB,@PATH[1]\XDIR\ABShear_STRESS.bin,@PATH[1]\YDIR\ABShear_STRESS.bin,@PAT H[1]\ZDIR\ABShear_STRESS.bin,@PATH[1]\Combined\ABShear_STRESS.bin,0

* Loading Binary Databases into the ACS SASSI UI for Fast SSI Response History Post-Processing

LOADACCDB, @PATH[1]\Combined\ABShear_ACC.bin LOADDISPDB, @PATH[1]\Combined\ABShear_THD.bin LOADTHSDB, @PATH[1]\Combined\ABShear_STRESS.bingies, Inc., All Right Reserved.

Post-Processing SSI Responses Using Binary Databases Described in Detail in Demo 13

* Plotting and Saving Results as Text Files from Binary Databases
 * Nodal Accelerations (MOTION Module)

ACCDBANI,@PATH[1]\Combined\ACC,Demo 13 Acceleration Time History MAXDBFRAME,ACC,@PATH[1]\Combined\ACC_Max

* Nodal Relative Displacements (RELDISP Module) DISPDBANI,@PATH[1]\Combined\THD,Demo 13 Relative Displacement MAXDBFRAME,DISP,@PATH[1]\Combined\THD_Max

* Element Stresses/Forces (STRESS Module) THSDBANI,@PATH[1]\Combined\STRESS,Demo 13 Stress Contour MAXDBFRAME,THS,@PATH[1]\Combined\Stress_Max

* Saving Binary Database Results to Text Files VAR,OUTNODES,63,137,205,219,253,271 VAR,OUTELEM,1,2,3,4,5,6,7,8,9,10,11,12,13,14

* Accelerations (MOTION Module) ACCDBTHFILE,OUTNODES,1,@PATH[1]\COMBINED BINFRAMEOUT,ACC,-1,0,0,@PATH[1]\Combined BINFRAMEOUT,ACC,1000,0,0,@PATH[1]\Combined BINFRAMEOUT,ACC,5.5,0.005,0,@PATH[1]\Combined

* Displacement (RELDISP Module) DISPDBTHFILE,OUTNODES,1,@PATH[1]\COMBINED Use **ACC**, **DISP**, or **THS** for this argument in the BINFRAMEOUT command to save frames for acceleration, displacement, or stress, respectively

Ζ

The output group number and stress component is controlled by this arguments, respectively

A list of nodes or elements must

be assigned to an ACS SASSI UI variable when saving specific

nodes or elements to text files.

These are not required when saving a frame containing all

nodes or elements

The output direction is controlled by

this argument, so 1 = X, 2 = Y, and 3 =

* Stress (STRESS Module) THSDBTHFILE,19,OUTELEM,1,@PATH[1]\Combined

BINSTRTBL,19,OUTELEM,-1,@PATH[1]\Combined\Group19_Max_Stress.txt

BINSTRTBL,19,OUTELEM,1000,@PATH[1]\Combined\Group19_tstep_1000_Stress.txt

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

Coordinate Transformation for Forces and Moments in Shell Elements – Details in Demo 14

To apply coordinate transformations to element forces and moments, the requested elements must first be added to a (section cut) <u>submodel</u> in the ACS SASSI UI.

This submodeling operation conveniently allows for multiple walls or floors to be stored independently without having to redefine any grouping currently present in the model, as well as plotted separately to visualize the elements selected to apply coordinate transformation to.

Coordinate Transformation Commands

For Planar Geometry - CTRVEC,10,1,0,@PATH[1],MAX For Cylindrical Geometry - CTRCCV,2,@PATH[1],MAX

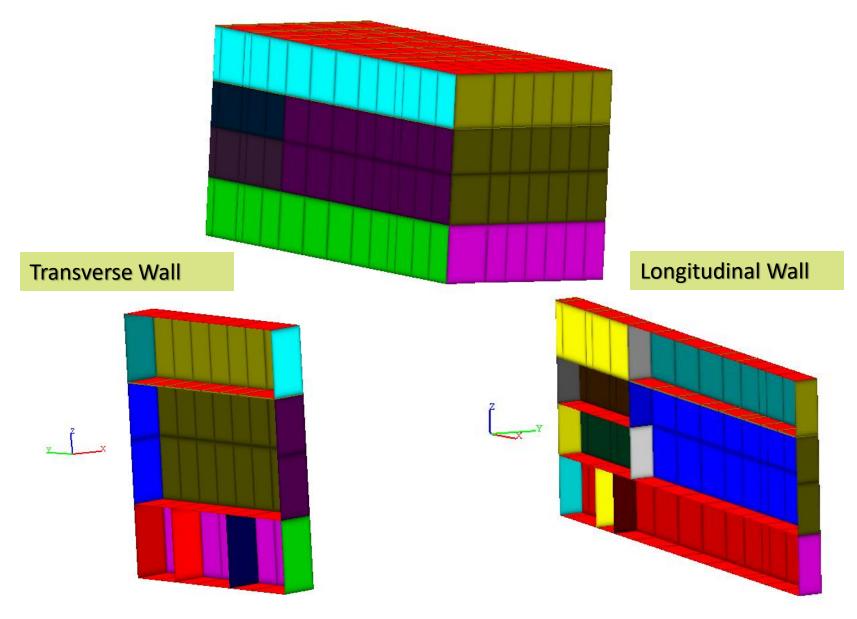
Some Useful Commands for Selecting Elements to

CutAdd,<cut num>,<group num>,<elem 1>, ... <elem N> CutAdd,<cut num>,<group num>,RANGE,<elem start>,[elem end], [stride] CutVol,<cutnum>,[Xmin],[Xmax],[Ymin],[Ymax],[Zmin],[Zmax] SLICE,<cutnum>,<pointx>,<pointy>,<pointz>,<normalx>,<normaly>,<normalz>

Defines a vector for the X-axis of the coordinate system to transform to. CTRCCV does not require this argument, as it is calculated internally for the cylindrical surface

Section-Cuts Capabilities

Section-Cuts Using ESTRESS Text Frames


The UI Section-Cut capability has two options:

1) Uses a single frame of stress data (single .ess frame file) to compute the section-cut forces and moments on a cross-section at a specific time step.

2) Uses a *multiple frames of stress data* (all .ess frame files) to compute the full time-history of the section-cut forces and moments.

Demo 8

Section-Cut Submodel Models

Section-Cut for Single ESTRESS Stress Frame

* Read element center stress frame READSTR, estress_02617.ess, C:\DEMOS\DEMO8\ESS_STRESS

*For the 1st section-cut in the SUBMODELER command line, type

CUTVOL,1,132.4

*The blank arguments to this command are interpreted as the respective *minimum or maximum extent of the building model geometry. This cut volume *is saved to cut #1.

CSECT,1,1,0,0,15.3,0,0,1

*This creates a cross-section model from cut #1 through point (0.0, 0.0, 15.3), *with a cross-section plane normal unit vector of (0.0, 0.0, 1.0). The cut cross-*section is saved to model #1

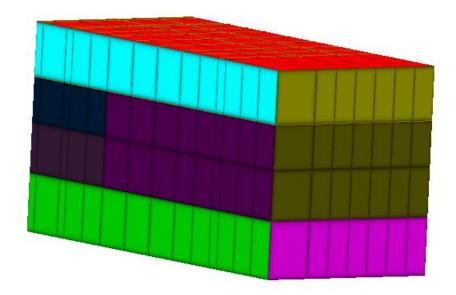
CALCPAR, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0" in the command SUBMODELER window to calculate the cross-section parameters, seismic forces and moments

Section-Cut Results

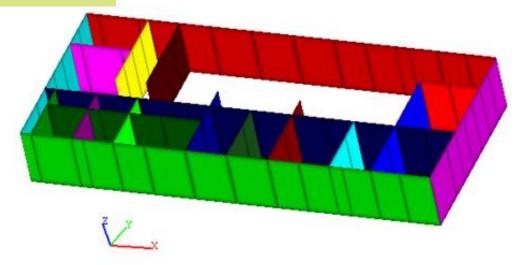
Model Parameters Centroid X =145.443 Y =-149.003 Z = 15.8 Area = 342 Ixx = 305990 Iyy = 5183.71 Izz = 311174 Fx = -28.0657 Fy = 11456.9 Fz = 109.184 Mx = -323054 My = 124.862 Mz = 97618.6

NOTE: If the element stress frame data is not read properly or not input, the force and moment parameters will be set to "0".

CALCPAR Command Example


```
actm,0
* Load Model and stress user must change path
inp,Demo8.pre,C:\DEMO PROBLEMS\DEMO8\
readstr, estress 02617.ess, C:\DEMO PROBLEMS\DEMO8\ESS STRESS
*define structual components to be cut
cutvol,1,132.4
cutvol,2,,,-120
* create cross sectional models of selected components along a plane
csect, 1, 1, 0, 0, 15.3, 0, 0, 1
csect, 2, 2, 0, 0, -1, 0, 0, 1
* calculate parameters for each of the cross sections
actm,1
calcpar,0,0,1,1,0,0,1
actm,2
calcpar,0,0,1,1,0,0,1
* output cross sections for visualization with PREP(optional)
actm,0
cut2sub,1,3
cut2sub,2,4
actm,3
write,XSub.pre,C:\DEMO PROBLEMS\DEMO8\
actm,4
* write, YSub.pre, C:\DEMO PROBLEMS\DEMO8\
```

CALCSECTHIST Command Batch Input


1 401 1 C:\DEMO_PROBLEMS\DEMO8\ESS_FRAMES\ estress_02401.ess estress_02402.ess estress_02403.ess estress_02404.ess estress_02405.ess estress_02406.ess estress_02407.ess estress_02408.ess estress_02409.ess estress_02410.ess

estress_02795.ess estress_02796.ess estress_02797.ess estress_02798.ess estress_02799.ess estress_02800.ess estress_02801.ess Batch input file has a similar configuration with the animation files, .thani or .rsani.

Section-Cut for Time History ESTRESS Frames

Section-Cut Model

2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

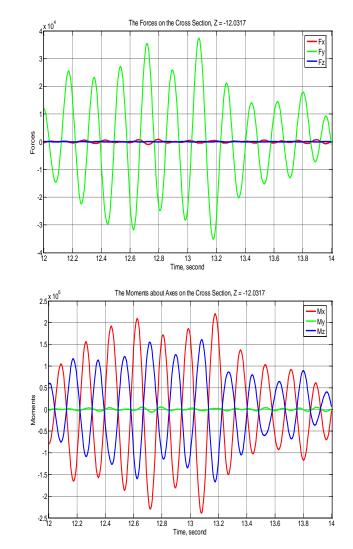
CALCSECTHIST Command Example

*

*Batch .pre input file of section cut for multiple frame data *

```
actm,0
*Replace Directory Path
inp,demo8.pre,C:\DEMO_PROBLEMS\DEMO8\
*
```

```
* Define structure component to be cut
slice,1,0.0,0.0,-12.0317,0.0,0.0,1.0
```


* Cut the selected structure component using cutting plane * Calculate the parameters on it, and output to given file Calcsecthist,C:\DEMO_PROBLEMS\DEMO8\estr_frame_files.lst,1,0.0,0.0,-12.0317,0.0,0.0,1.0,1.0,0.0,0.0,1,.005,C:\DEMO_PROBLEMS\DEMO8\frc_ mmt_on_cut02.txt

CALCSECTHIST Results

C:\DEMO_PROBLEMS\DEMO8\frc_mmt_on_cut02.txt file:

0.005 -343.777 12065.2 0.229168 -800746 -21965.1 581499 0.01 -268.056 11539.5 0.300395 -779248 -16700.6 600032 0.015 -189.851 10623.5 0.294853 -733816 -10990.5 593052 0.02 -114.229 9320.15 0.227868 -665089 -5282.46 558887 0.025 -44.3936 7645.78 0.144148 -573880 2.20757 497620 0.03 18.0423 5647.78 0.0908182 -461901 4514.26 411756 0.035 72.3351 3391.01 0.0894927 -331126 8011.35 305474 0.04 117.752 967.345 0.124164 -184604 10378.6 184558

1.97 -676.309 9226 0.149393 -698463 -42784.3 401711 1.975 -631.161 8753.78 0.143451 -677218 -40340.6 396997 1.98 -553.34 7862.11 0.158777 -627501 -35783.4 376102 1.985 -450.432 6584.62 0.16545 -550419 -29410.2 339107 1.99 -330.715 4981.56 0.133199 -448530 -21628.8 287164 1.995 -202.2 3116.14 0.0512961 -325035 -12940.6 221694 2 -72.0058 1058.89 -0.0630017 -184306 -3907.81 144578 2.005 53.7767 -1132.73 -0.172686 -30951.4 4886.85 57394.5

CALCSECTHISTDB Command Using STRESS Binary Database (see Demo 9)

CALCSECTHISTDB,<cutnum>,<px>,<py>,<pz>,<nx>,<ny>,<nz>,<rz>,<sys>,<ts>,[start],[end],[Stride],<outfile>

Calculate the Stress history from a cross section using the database currently loaded into User Interface memory. This command has the functionality as CALCSECTHIST does for ASCII generate stress data.

The output of this command is a 7 column text table where the 1st column is either the simulation time or step number if ts is set to 0. The rest of the six columns are the stress components of the cross section. The final line of the file will have the word MAX in the1st column. This line will contain the absolute maximum for each component in the table, but the sign of the stress will be maintained on this line.

Before using this command, the stress database for the calculation must be loaded into the UI. The associated model must be loaded into memory and set as the active model. The cut input by the user *cutnum* must be defined before this command. 2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

Automatic Section-Cuts Capability Using STRESS Binary Databases – Applicable to Panels

Section cuts can be automatically created in the ACS SASSI UI with the EXTRACTCUTS command. For this functionality, panels must be defined first with the "P" command. Each panel should be a group containing the elements of a wall or floor, and only those elements, for which section cut calculations are to be performed.

The EXTRACTCUTS command allows for the selection of the number of section cuts to be made on each panel.

The EXTRACTCUTS command will create a pre file named AutoCuts.pre in the model directory specified in the command arguments. All of the results will be stored in directory specified in the EXTRACTCUTS command.

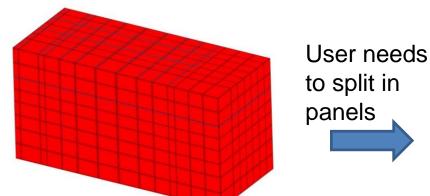
After the AutoCuts.pre file is created, it should be loaded into the ACS SASSI UI, where a set of time history files for the section cuts will be created in the specified folder.

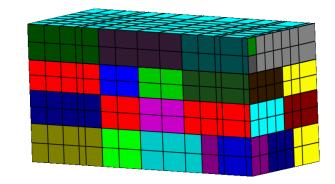
See Demo 9 for a complete example of this functionality.

EXTRACTCUTS Command Using Binary STRESS Database (see Demo 9)

EXTRACTCUTS,<num>,<path>

Command that will automatically generate section cuts and cross sections for all defined rectangular wall panels. All cross sections will be perpendicular to one global coordinate system axis.


The axis the cross sections is perpendicular to will be determined by the normal vector to the face of the panel.


The <num> argument will determine how many cross sections per panel will be generated. The extents of each panel will be calculated and cross sections will be placed along each panel based on the number of cross sections requested. If a cross section would be parallel to an element boundary the cross section will be moved slightly away from the boundary so that the cross section will be include a distinct row of elements.

num - number of cross sections per panel
path - path for all results from the cut history calculations. This directory is where results will be written.

AutoCuts.pre will be written in the model directory.

Automatic Section-Cuts for All Building Walls

EXTRACTCUTS,3,C:\ACSV300\DEMO_PROBLEMS\DEMO9\CutResults INP,C:\ACSV300\DEMO_PROBLEMS\DEMO9\MODEL_PREP\autocuts.pre

CUTCLR,1

CUTADD,1,3,RANGE,1,4,1

CALCSECTHISTDB,1,0,0,-0.60833,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_1-Cut_1-Z.thcs CALCSECTHISTDB,1,0,0,-12.0417,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_1-Cut_2-Z.thcs CALCSECTHISTDB,1,0,0,-23.475,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_1-Cut_3-Z.thcs CUTCLR,1

CUTADD,1,8,RANGE,1,1,1

CALCSECTHISTDB,1,0,0,74.5875,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_2-Cut_1-Z.thcs CALCSECTHISTDB,1,0,0,69.2708,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_2-Cut_2-Z.thcs CALCSECTHISTDB,1,0,0,63.9542,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_2-Cut_3-Z.thcs CUTCLR,1

CUTADD,1,9,RANGE,1,10,1

CALCSECTHISTDB,1,0,0,73.2584,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_3-Cut_1-Z.thcs CALCSECTHISTDB,1,0,0,62.7579,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_3-Cut_2-Z.thcs CALCSECTHISTDB,1,0,0,51.9916,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_3-Cut_3-Z.thcs CUTCLR,1

CUTADD,1,10,RANGE,1,10,1

CALCSECTHISTDB,1,0,0,73.2584,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_4-Cut_1-Z.thcs CALCSECTHISTDB,1,0,0,62.7579,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_4-Cut_2-Z.thcs CALCSECTHISTDB,1,0,0,51.9916,0,0,1,1,0,0,1,0.005,,,,C:\ACSV300\Demo_Problems\Demo9\CutResults\Panel_4-Cut_3-Z.thcs¹⁵⁰ 2019 Copyright of Ghiocel Predictive Technologies, Inc., All Right Reserved.

Automatic Section-Cut Results for Each Panel (Only SOLID and SHELL elements)

🔚 Panel_1-Cut_1-Z.thcs 🔀

```
0.005 \ 0 \ -69.9309 \ 37.6862 \ -106.972 \ 11.1526 \ -4.09633
 2
    0.01 0 -67.8773 63.0343 -63.5459 11.4337 -4.3319
    0.015 0 -69.4638 89.6154 -69.7269 13.0914 -4.5634
 3
 4
    0.02 0 -74.1617 99.4689 -107.692 15.3697 -4.75573
 5
    0.025 0 -78.6502 91.6602 -152.279 18.2159 -4.97347
 6
    0.03 0 -78.2464 80.1548 -170.925 20.5321 -5.26611
 7
    0.035 0 -72.3995 76.2408 -138.615 22.3218 -5.59438
 8
    0.04 0 -67.5496 75.7959 -79.6207 25.7459 -5.89959
 9
    0.045 0 -67.3373 73.6568 -31.0075 32.0366 -6.30584
    0.05 0 -66.3615 68.8503 -20.0202 40.7081 -7.046
10
11
    0.055 0 -62.419 62.2072 -38.712 51.0918 -8.10038
12
    0.06 0 -58.3239 58.1724 -64.3889 62.0341 -9.02595
13
    0.065 0 -52.6974 64.6828 -97.1783 72.2112 -9.27489
    0.07 0 -45.4708 82.3545 -129.664 80.5001 -8.80717
14
15
    0.075 0 -40.7844 97.2829 -158.196 86.7036 -8.5307
16
    0.08 \ 0 \ -46.1877 \ 97.0737 \ -196.334 \ 91.5329 \ -10.3474
17
    0.085 0 -58.4996 83.2897 -241.41 96.4255 -13.5889
18
    0.09 0 -65.812 70.0311 -197.27 102.053 -16.8381
19
    0.095 0 -65.1281 73.2022 -6.5975 108.447 -19.5814
20
    0.1 0 -59.3704 114.679 92.9067 115.873 -21.5858
21
    0.105 0 -59.3496 184.703 53.6404 124.925 -22.7502
22
    0.11 \ 0 \ -75.7758 \ 247.515 \ -43.7629 \ 135.286 \ -23.1046
23
    0.115 0 -100.635 286.312 -146.877 145.889 -22.9445
24
   0.12 0 -122.968 302.562 -214.511 154.831 -22.7468
25
   0.125 0 -136.99 303.197 -232.66 160.209 -22.9484
```

10621 53.105 0 -0.0214116 0.0375489 -0.0963075 0.0631199 -0.00778233 10622 53.11.0-0.018474-0.0377019 -0.0861549 0.0469432 -0.0058273 10623 53.115 0 -0.0207454 0.0423199 -0.0860217 0.0630984 -0.00787859 10624 53.12 0 -0.0117089 0.0491506 -0.0760295 0.0467119 -0.00601751 10625 53.125 0 -0.0196888 0.0515773 -0.0637794 0.0631918 -0.00793249 10626 53.13 0 -0.0145279 0.0365844 -0.0993899 0.0467873 -0.00585364 -0.0239281 0.0374023 -0.0848703 0.0632725 -0.00779552 10627 53.135 0 10628 53.14 0 -0.0150359 0.0398383 -0.0872971 0.0468199 -0.0059409 10629 53.145 0 -0.0184727 0.0501768 -0.0724727 0.0630482 -0.00799586 10630 53.15 0 -0.0129522 0.0501052 -0.0667431 0.0469106 -0.00603752 -0.0208128 0.0396215 -0.0870099 0.0631481 -0.00785401 10631 53,155 0 10632 53.16 0 -0.017962 0.0358831 -0.0880544 0.0469508 -0.00586535 10633 53.165 0 -0.0215919 0.0404553 -0.0817124 0.0632063 -0.00790823 10634 53.17 0 -0.0114243 0.0465765 -0.0797366 0.046706 -0.0060662 10635 53.175 0 -0.0201326 0.0531173 -0.0613133 0.0632065 -0.00800924 10636 53.18 0 -0.0143684 0.039221 -0.0897521 0.0468201 -0.0059232 10637 53.185 0 -0.0236251 0.0360672 -0.0888324 0.0632722 -0.00781393 10638 53.19 0 -0.0162419 0.0389148 -0.0835934 0.0469358 -0.00593302 10639 53.195 0 -0.0188095 0.0476641 -0.0774831 0.0630613 -0.00798414 10640 53.2 0 -0.0137601 0.051264 -0.0665003 0.0469145 -0.0060446 10641 53.205 0 -0.0207728 0.0430494 -0.079199 0.0631862 -0.0078587 10642 53.21 0 -0.0177523 0.0349275 -0.0962289 0.0469123 -0.00582196 10643 53.215 0 -0.0226185 0.0398394 -0.0815674 0.0632713 -0.00783849 10644 53.22 0 -0.0115192 0.044413 -0.0860175 0.0467145 -0.0059828 10645 53.225 0 -0.0192341 0.0538855 -0.0632226 0.0632074 -0.00796208 10646 53.23 0 -0.0136478 0.0427943 -0.0819503 0.0468822 -0.0058944 10647 53.235 0 -0.0226164 0.0358968 -0.0964186 0.0632349 -0.00776433 10648 53.24 0 -0.0168447 0.0388522 -0.0839933 0.046985 -0.005863 53.245 0 -0.0184628 0.0455753 -0.0839083 0.0630799 -0.00792329 10649 MAX 0 -662.478 1554.4 -5878.59 1117.13 -189.035 10650

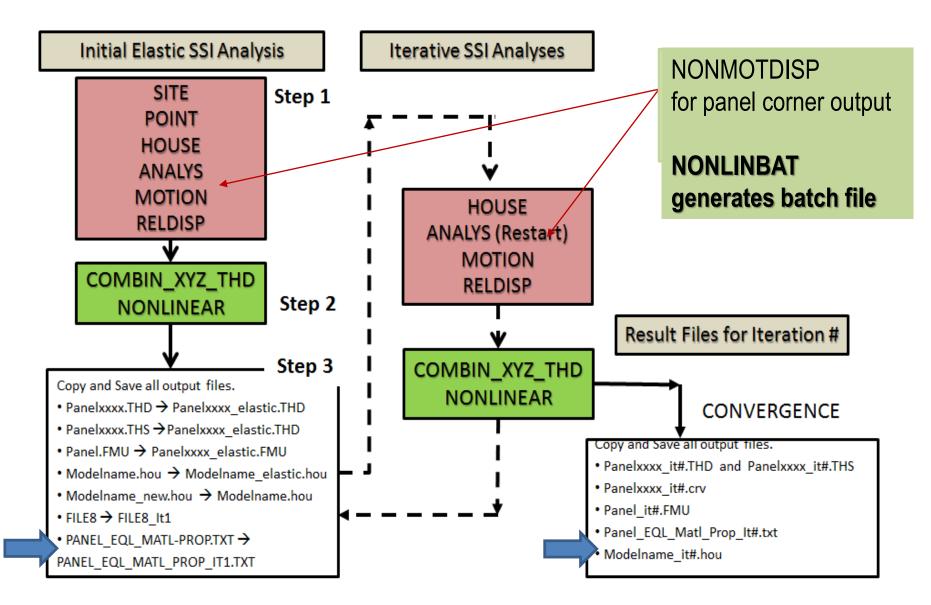
Batch SSI Analysis Runs

If the SSI runs are done in the batch mode under a DOS window, then, a batch file needs to be created. To run a SSI module in batch mode, the following DOS command is required:

SSI_module_name.exe < SSI_module_name.inp

where SSI_module_name could be SITE, or POINT or ANALYS. The SSI module executables are installed by default in the ACS_C directory on the hard drive, and are also provided on the ACS SASSI installation DVD in the Batch. Each input file with the SSI_module_name and the extension .inp contains only three input lines:

modelname modelname.ext_input


modelname_SSI_module_name.out

where ext_input is the extension provided by the ACS SASSI UI AFWRITE command.

Batch SSI Analysis Run Simplest Example

				Demo4
				Demo4.soi
1	REM Embedbment Example Batch Mode			Demo4 Soil.out
2	REM This batch file is used to run the SSI modu	les f	or the embedded example.	-
3	0echo off			Demo4
4				
5	REM FIRST ITERATION			Demo4.sit
6	C:\acsv300\EXEB\Soilb.exe < Soil.in		Runs the soil module with inputs defined in the Soil.in file	Demo4_Site.out
7	C:\acsv300\EXEB\Siteb.exe < Site.in	REM	Runs the site module with inputs defined in the Site.in file	_
8	C:\acsv300\EXEB\Point3b.exe < Point.in	REM	Runs the point module with inputs defined in the Point.in file	Demo4
9	C:\acsv300\EXEB\Houseb.exe < House.in	REM	Runs the house module with inputs defined in the House.in file	Demo4.poi
10	C:\acsv300\EXEB\Analysb.exe < Analys.in	REM	Runs the analys module with inputs defined in the Analys.in file	-
11	C:\acsv300\EXEB\Stressb.exe < Stress.in	REM	Runs the stress module with inputs defined in the Stress.in file	Demo4_Point.out
12				
13	REM SECOND ITERATION			Demo4
14	C:\acsv300\EXEB\Houseb.exe < House.in		Runs the house module with inputs defined in the House in file	Demo4.hou
15	C:\acsv300\EXEB\Analysb.exe < Analys.in	REM	Runs the analys module with inputs defined in the Analys.in file	
16	C:\acsv300\EXEB\Stressb.exe < Stress.in	REM	Runs the stress module with inputs defined in the Stress.in file	Demo4_House.out
17				
18	REM THIRD ITERATION	DEM	Due the bound module with impute defined in the Henry in file	Demo4
19	C:\acsv300\EXEB\Houseb.exe < House.in	REM	Runs the house module with inputs defined in the House in file	Demo4.anl
20 21	C:\acsv300\EXEB\Analysb.exe < Analys.in C:\acsv300\EXEB\Stressb.exe < Stress.in	REM REM	Runs the analys module with inputs defined in the Analys.in file Runs the stress module with inputs defined in the Stress.in file	Demo4 Analys.out
21	C. (acsysue (EALE (Stressb.exe < Stress.in	REM	Runs the stress module with inputs defined in the stress.in file	Domo I_Indi JD.ouo
22	REM POST PROCESSING			
24	C:\acsy300\EXEB\Motionb.exe < Motion.in		REM Runs the motion module with inputs defined in the Motion.in file	Demo4
25	C:\acsv300\EXEB\Stressb.exe < Stress Post.in	REM	Runs the stress module for post processing with inputs defined in the Stress Po	Demo4.mot
26	C:\acsv300\EXEB\Reldispb.exe < ReldispX.in	REM	Runs the reldisp module for x direction with inputs defined in the ReldispX.in	Demo4 Motion.out
27	C:\acsv300\EXEB\Reldispb.exe < ReldispY.in	REM	Runs the reldisp module for y direction with inputs defined in the ReldispY.in	- <u> </u>
28	C:\acsv300\EXEB\Reldispb.exe < ReldispZ.in	REM	Runs the reldisp module for z direction with inputs defined in the ReldispZ.in	
29				
				Demo4.str
				Demo4_Stress.out

Option NON SSI Analysis Batch Run Example

Confidential Information of GP Technologies, Inc. Provided to Terrabyte and Hitachi Only

NONLINBAT, 1 Generated Batch Run File

```
🗄 AB_SHEAR_NL.pre 🗷 📙 RUN_EQUIVNL_XYZ.bat 🛛
    echo off
 2
    setlocal EnableDelayedExpansion
    REM *********
                       *********************
 3
 4
    REM *
             Batch File for Equ. Linear Structural Analysis
    5
 6
 7
    REM This batch file serves as a template for nonlinear SSI analysis
 8
    REM in ACS SASSI.
 9
10 REM Set Model Name
11
    set model name=AB SHEAR NL
12 REM Set Number Iteration Number
13
    SET /A vers=10
14
15 mkdir .\FILE8
16 mkdir .\OUT Files\Elastic
17 mkdir .\Out Files\It 1\
18
   mkdir .\CRV Files
19 mkdir .\NL TH
20 mkdir .\work
21
    cd .\work
23
             Run XYZ Directions
   REM *
    2.4
25
26 echo %model name% > point.inp
    echo %model name%.poi >> point.inp
27
    echo %model name% poi.out >> point.inp
28
29
   echo %model name% > house.inp
31
    echo %model name%.hou >> house.inp
    echo %model name% hou.out >> house.inp
32
33
34
    echo %model name% > analys init.inp
    echo %model name% init.anl >> analys init.inp
35
    echo %model name% anl i.out >> analys init.inp
36
37
    echo %model name% > analys restart.inp
39
    echo %model name% restart.anl >> analys restart.inp
    echo %model name% anl r.out >> analys restart.inp
40
41
 . .
```

Confidential Information of GP Technologies, Inc. Provided to Terrabyte and Hitachi Only

```
for %%i in (X Y Z) do (
42
43
        copy ... \%model name% %%iDIR.sit %model name% %%iDIR.sit
        echo %model name% %%iDIR > site.inp
44
        echo %model name% %%iDIR.sit >> site.inp
45
        echo %model name% %%iDIR site.out >> site.inp
46
47
48
        C:\ACSV300\EXEB\siteb.exe < Site.inp
49
        copy FILE1 FILE1%%i
50
51
52
    copy ... \%model name%.poi
53
   copy ... \%model name%.hou
    copy ... \%model name% init.anl
54
    copy ... \%model name% restart.anl
55
56
57
   C:\ACSV300\EXEB\point3b.exe < Point.inp
58
    C:\ACSV300\EXEB\houseFSb.exe < House.inp
59
   C:\ACSV300\EXEB\analysFSb.exe < Analys init.inp
60
61
   move *.out ..\OUT Files\Elastic
62
   copy FILE8X ..\FILE8\FILE8X Elastic
   copy FILE8Y .. \FILE8\FILE8Y Elastic
63
   copy FILE8Z ..\FILE8\FILE8Z Elastic
64
65
    66
67
    REM *
              Post-Process Elastic Run
    68
69
70
   for %%i in (X Y Z) do (
71
72
        mkdir .\%%iDIR
73
        cd .\%%iDIR
74
        copy ... \FILE8%%i FILE8
75
        echo %model name% > motion.inp
76
77
        echo %model name%.mot >> motion.inp
78
        echo %model name% mot.out >> motion.inp
79
80
        copy ... \... \ %model name %.mot
        copy ...\...\%model name%.hou
81
      C:\ACSV300\EXEB\motionb.exe < Motion.inp
Confidential Information of GP Technologies, Inc. Provided to Terrabyte and Hitachi Only
82
```

```
83
          for %%j in (X Y Z) do (
84
85
          echo %model name% > reldisp.inp
          echo %model name%.rdi >> reldisp.inp
86
          echo %model name% %%j %%iDIR reldisp.out >> reldisp.inp
87
88
          89
          C:\ACSV300\EXEB\reldispb.exe < reldisp.inp
90
91
92
93
94
      move *.out ..\..\OUT Files\Elastic
95
       cd ...
96
97
98
   copy %model name%.hou ... \%model name% Elastic.hou
99
   100
101
   REM *
         COMBINE X, Y, Z THD FILES
   102
103
104 IF EXIST ... XYZ THD.inp (
105
      copy .. \XYZ THD.inp
106
      echo XYZ THD.inp > CMB.INP
      C:\ACSV300\EXEB\COMB XYZ THD.exe < CMB.inp
107
108
109
110
   111
        COMBINE XX, YY, ZZ THD FILES
   REM *
   112
113
114
   IF EXIST .. \XXYYZZ THD.inp (
115
      copy .. \XXYYZZ THD.inp
116
      echo XXYYZZ THD.inp > CMB.INP
117
      C:\ACSV300\EXEB\COMB XYZ THD.exe < CMB.inp
118
119
```

```
120
121
    REM *
            RUN NONLINEAR MODULE
    122
123
124
    echo %model name% > EOL.inp
125
    echo %model name%.eql >> EQL.inp
126
    echo %model name% EQL.out >> EQL.inp
127
128
    copy ... \%model name% XDIR.sit %model name%.sit
129
    copy ... \%model name%.eql
130
131
   C:\ACSV300\EXEB\nonlinear.exe < EQL.inp
    copy *.CRV ..\CRV Files\*.CRV
132
133
    move %model name% EQL.out ...\Out Files\It 1\
    copy %model name% NEW.hou ...\%model name% It1.hou
134
135
    copy %model name% NEW.hou %model name%.hou
136
    137
138
            Copy Equivalent Linear Panel Files
    REM *
    139
140
141
    mkdir .. \NL TH\Elastic
142
    IF EXIST PANEL EQL MATL PROP.TXT (
143
       COPY PANEL EQL MATL PROP.TXT .. \PANEL EQL MATL PROP IT1.TXT
       FOR /F "eol=; tokens=1* delims=, " 88z in (Panel File List.inp) do (
144
145
           copy %%z.THD ..\NL TH\Elastic\%%z ELASTIC.THD
           copy %%z ELASTIC.THS ... NL TH\Elastic.**z ELASTIC.THS
146
           copy %%z.THD %%z ELASTIC.THD
147
148
           copy %%z AXIAL.THD .. \NL TH\Elastic\%%z AXIAL ELASTIC.THD
149
150
```

```
152
153
            Copy Equivalent Linear Spring Files
   REM *
   154
155
156
   IF EXIST Spring EQL MATL PROP.TXT (
157
       copy Spring EQL MATL PROP.TXT .. \Spring EQL MATL PROP IT1.TXT
       FOR /F "eol=; tokens=1* delims=, " %%z in (Spring File List.inp) do (
158
159
          copy %%z.THD ..\NL TH\Elastic\%%z ELASTIC.THD
160
          copy %%z ELASTIC.THS ... NL TH\Elastic. %%z ELASTIC.THS
          copy %%z.THD %%z ELASTIC.THD
161
162
163
164
   165
166
           Copy Equivalent Linear BEAM Files
   REM *
   167
168
   IF EXIST BEAM HINGE EQL MATL PROP.TXT (
169
170
       copy BEAM HINGE EQL MATL PROP.TXT .. \BEAM HINGE EQL MATL PROP IT1.TXT
       FOR /F "eol=; tokens=1* delims=, " %%z in (BEAM File List.inp) do (
171
172
          copy %%z.THD ..\NL TH\Elastic\%%z ELASTIC.THD
          copy %%z ELASTIC.THS ... NL TH\Elastic \%%z ELASTIC.THS
173
          copy %%z.THD %%z ELASTIC.THD
174
175
176
```

```
177
    REM ********************
178
179
    REM *
             MAIN ITERATION LOOP
    180
181
182
    SET /A ITER=1
183
    FOR /L %%w in (1,1,%vers%) do (
        184
185
        REM *
                 RUN X AND Y DIRECTIONS
        186
187
188
        C:\ACSV300\EXEB\houseFSb.exe < House.inp
189
        C:\ACSV300\EXEB\analysFSb.exe < Analys restart.inp
190
        mkdir ..\OUT Files\It !ITER!
191
        move *.out ..\OUT Files\It !ITER!\
192
193
        copy FILE8X ... \FILE8 \FILE8X It !ITER!
194
        copy FILE8Y ... \FILE8 \FILE8Y It !ITER!
        for %%i in (X Y) do (
195
196
            cd .\%%iDIR
197
            copy .. \FILE8881 FILE8
198
199
200
            echo %model name% > motion.inp
201
            echo %model name%.mot >> motion.inp
202
            echo %model name% mot.out >> motion.inp
203
204
            copy ...\...\%model name%.mot
205
            copy ...\...\%model name%.hou
            C:\ACSV300\EXEB\motionb.exe < motion.inp
206
207
208
            for %%j in (X Y Z) do (
209
               echo %model name% > reldisp.inp
               echo %model name%.rdi >> reldisp.inp
210
211
               echo %model name% %%j %%iDIR reldisp.out >> reldisp.inp
212
213
               copy ...\...\%model name% %%j %%iDIR.rdi %model name%.rdi
214
               C:\ACSV300\EXEB\reldispb.exe < reldisp.inp
215
216
           move *.out ..\..\OUT Files\It !ITER!
217
            cd ...
218
219
```

```
220
221
       REM *
              COMBINE THD FILES
222
      223
224
       IF EXIST ... XYZ THD.inp (
225
         copy ... XYZ THD.inp
         echo XYZ THD.inp > CMB.INP
226
227
         C:\ACSV300\EXEB\COMB XYZ THD.exe < CMB.inp
228
229
       230
231
       REM *
              COMBINE XX, YY, ZZ THD FILES
2.32
       233
234
       IF EXIST ..\XXYYZZ THD.inp (
235
         copy ... XXYYZZ THD.inp
236
         echo XXYYZZ THD.inp > CMB.INP
         C:\ACSV300\EXEB\COMB XYZ THD.exe < CMB.inp
237
238
239
      240
241
      REM *
              RUN NONLINEAR MODULE
242
       243
      copy ... \%model name% Elastic.hou %model name%.hou
244
245
      C:\ACSV300\EXEB\nonlinear.exe < EOL.inp
      246
               Copy Equivalent Linear Panel Files
247
       REM *
       248
249
250
      mkdir ... NL TH/It !ITER!
251
       IF EXIST PANEL EQL MATL PROP.TXT (
          FOR /F "eol=; tokens=1* delims=, " %%z in (Panel File List.inp) do (
252
             copy %%z.THD .. \NL TH\It !ITER!\%%z It!ITER!.THD
253
254
             copy %%z.THS .. \NL TH\It !ITER!\%%z It!ITER!.THS
             copy %%z AXIAL.THD .. \NL TH\It !ITER!\%%z AXIAL It!ITER!.THD
255
256
257
         copy PANEL.fmu PANEL It!ITER!.fmu
         copy PANEL.fmu ..\PANEL It!ITER!.fmu
258
259
260
```

```
260
261
       REM **********
                                    ***************
2.62
                Copy Equivalent Linear Spring Files
       REM *
       263
264
265
       IF EXIST Spring EQL MATL PROP.TXT (
266
           FOR /F "eol=; tokens=1* delims=, " %%z in (Spring File List.inp) do (
267
              copy %%z.THD .. \NL TH\It !ITER! \%%z It!ITER! .THD
              copy %%z.THS .. \NL TH\It !ITER! \%%z It!ITER! .THS
268
269
270
           copy spring.fmu spring It!ITER!.fmu
271
           copy spring.fmu ..\SPRING It!ITER!.fmu
272
273
274
       275
       REM *
                Copy Equivalent Linear BEAM Files
       276
277
278
       IF EXIST BEAM HINGE EQL MATL PROP.TXT
279
           FOR /F "eol=; tokens=1* delims=, " %%z in (BEAM File List.inp) do (
              copy %%z.THD .. \NL TH\It !ITER! \%%z IT!ITER!.THD
280
281
              copy %%z.THS .. \NL TH\It !ITER! \%%z IT!ITER! .THS
282
283
           copy BEAM.fmu BEAM It!ITER!.fmu
           copy BEAM.fmu ..\BEAM It!ITER!.fmu
284
285
286
287
       SET /A ITER+=1
288
       copy %model name% NEW.hou %model name%.hou
289
       copy %model name% NEW.hou .. \%model name% It!ITER!.hou
       290
291
                Copy Equivalent Linear Panel Material Files
       REM *
       292
293
       IF EXIST PANEL EQL MATL PROP.TXT (
294
           COPY PANEL EQL MATL PROP.TXT .. \PANEL EQL MATL PROP IT!ITER!.TXT
295
         Confidential Information of GP Technologies, Inc. Provided to Terrabyte and Hitachi Only
```

2

```
615
      REM ***************
274
                             **************
            Copy Equivalent Linear BEAM Files
275
      REM *
      276
277
278
      IF EXIST BEAM HINGE EQL MATL PROP.TXT (
         FOR /F "eol=; tokens=1* delims=, " %%z in (BEAM File List.inp) do (
279
           copy %%z.THD ..\NL TH\It !ITER!\%%z IT!ITER!.THD
           copy %%z.THS .. \NL TH\It !ITER!\%%z IT!ITER!.THS
281
282
283
         copy BEAM.fmu BEAM It!ITER!.fmu
         copy BEAM.fmu ..\BEAM It!ITER!.fmu
284
285
286
287
      SET /A ITER+=1
288
      copy %model name% NEW.hou %model name%.hou
      copy %model name% NEW.hou ..\%model name% It!ITER!.hou
289
      290
291
             Copy Equivalent Linear Panel Material Files
      REM *
      292
293
      IF EXIST PANEL EQL MATL PROP.TXT (
         COPY PANEL EQL MATL PROP.TXT .. \PANEL EQL MATL PROP IT!ITER!.TXT
294
295
      296
297
             Copy Equivalent Linear Spring Material Files
      REM *
      298
299
      IF EXIST Spring EQL MATL PROP.TXT (
         copy Spring EQL MATL PROP.TXT .. \Spring EQL MATL PROP IT!ITER!.TXT
300
301
      302
303
      REM *
             Copy Equivalent Linear BEAM Material Files
      304
305
      IF EXIST BEAM HINGE EQL MATL PROP.TXT (
         COPY BEAM HINGE EQL MATL PROP.TXT .. \BEAM HINGE EQL MATL PROP IT!ITER!.TXT
306
307
308
309
   310
311
   REM *
          Equ. Linear Structual Analysis Complete
   312
313
```

Confidential Information of GP Technologies, Inc. Provided to Terrabyte and Hitachi Only

Auxiliary Programs:

COMB_XYZ_STRAIN applicable to 3D nonlinear soil site response or SSI analysis using iterative equivalent linear procedure. Combines three directional shear-strains for X, Y and Z inputs in the nonlinear soil solid elements at each SSI iteration.

COMB_XYZ_THD applicable to nonlinear structure SSI analysis using iterative equivalent linear procedure (*for Option NON*). Combines directional node displacements for nonlinear shell walls and spring elements at each SSI iteration.

BuildFile77 applicable to incoherent SSI analysis of deeply embedded structures, such as SMRs. Permits performing incoherent SSI analysis for basements with different level node coordinates & configurations or when incoherent input has different coherence functions at different depths.

Restart SSI Analyses

The restart analyses imply that large files were saved. The following changes of problem parameters need different levels for the restart analyses:

1. Change in the Control Motion

Suppose results are required for a different time history (or response spectrum) of the control motion. Then, as long as the nature of seismic environment, i.e., the type of wave field, is not changed, only the module MOTION has to be re-executed.

2. Change in Seismic Environment

Suppose that structure was originally analyzed for the effects of vertically propagated body waves and that results are required for the case of incident Rayleigh waves causing the same motion at the control point as in the free field. In this case only a part of the SITE module and ANALYS module have to be re-executed. Also, for motion incoherency.

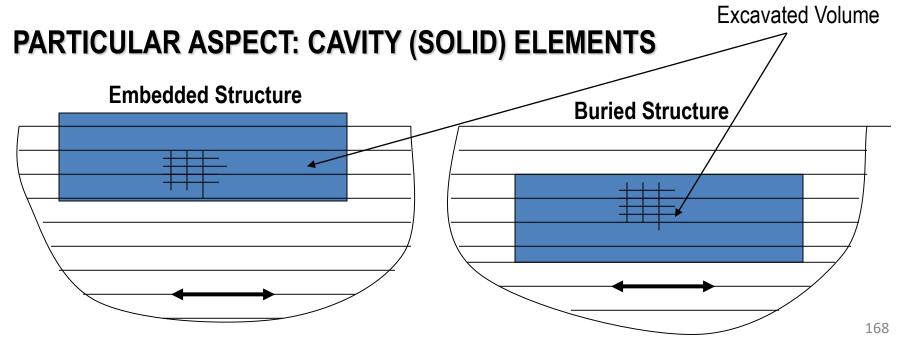
3. Change in Structure or Near-Field Soil

If changes are made in the superstructure or near field soil, the HOUSE, ANALYS, STRESS or MOTION and RELDISP modules have to be reexecuted.

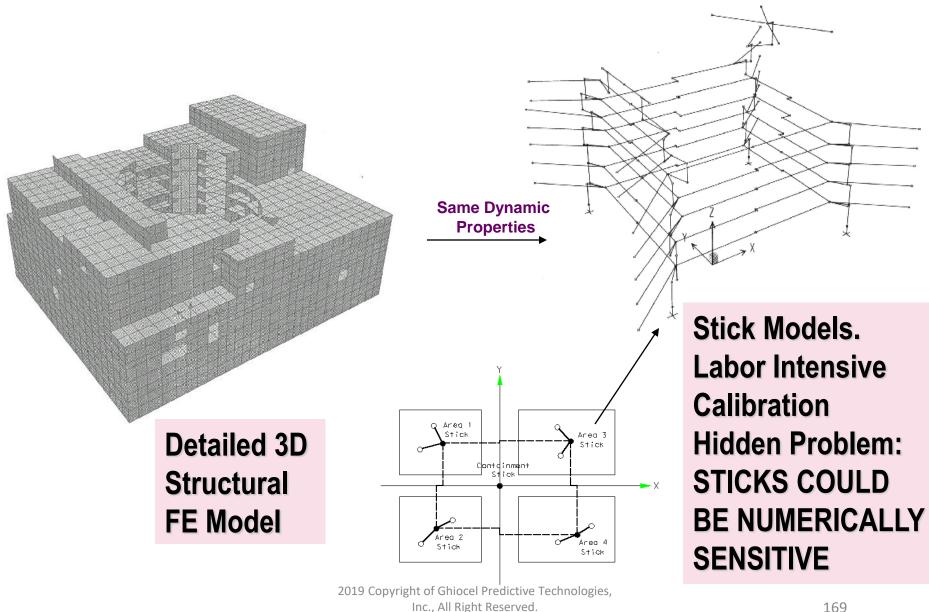
Examples: nonlinear soil behavior, or concrete cracking in Option NON

The restart files for the fast-solver are the COOXxxx and COOTKxxx, DOFSMAP, FILE90 and FILE91 files.

3. Building SSI Models Using ACS SASSI .Pre UI Commands


Building A SSI Analysis Models

Step 1: Define Dynamic Inputs (Seismic Motion or Forces)


Step 2: Define Soil Layering

- Step 3: Define Structure and Near Field Zone Using FE Modeling
- Step 4: Define Seismic Motion Spatial Incoherency
- Step 5: Select SSI Analysis Options (Assumptions, Methods, Parameters)
- Step 6: Manage SSI Analysis Runs

Step 7: Post Processing for Extracting Results

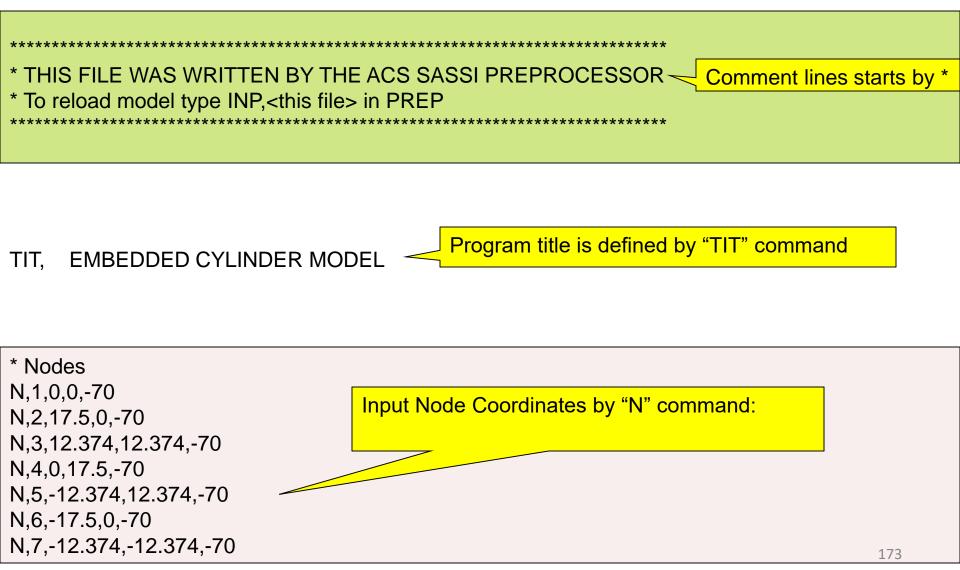
Stick Models vs. FEA SSI Models

SSI Model Building Recommendations

The user manuals contain a large number of comments on various SSI modeling aspects.

Top-level recommendations of node and element numbering:

- Soil layering to be numbered from ground surface to baserock
- Excavation volume nodes to be numbered from baserock to ground surface
- Interaction nodes defined in ascending number order
- Excavation volume layers to be numbered from ground surface to baserock
- Excavation volume elements to be numbered from ground surface to baserock


We also recommend always check the consistency of your soil layer or material element assignments for the soil excavation volume and the structural embedment part by revising the HOUSE output (modelname_HOUSE.out).

For technical support please contact us acs.sassi@ghiocel-tech.com.

ACS SASSI Model Converters

ANSYS .cdb to .pre Converter		×	
Input File Name		Convert	
	<<	Cancel	
Output .pre File Name			
	<<		
Save Converted Data to Model Number		verters to tra CDB files) inp	
Enter Value for Gravity	•	but into the A	
	input for	mat or SASS	12000.
Disclaimer: This converter has had limited testing and may prov in some cases. Please check all models for accuracy before sim			

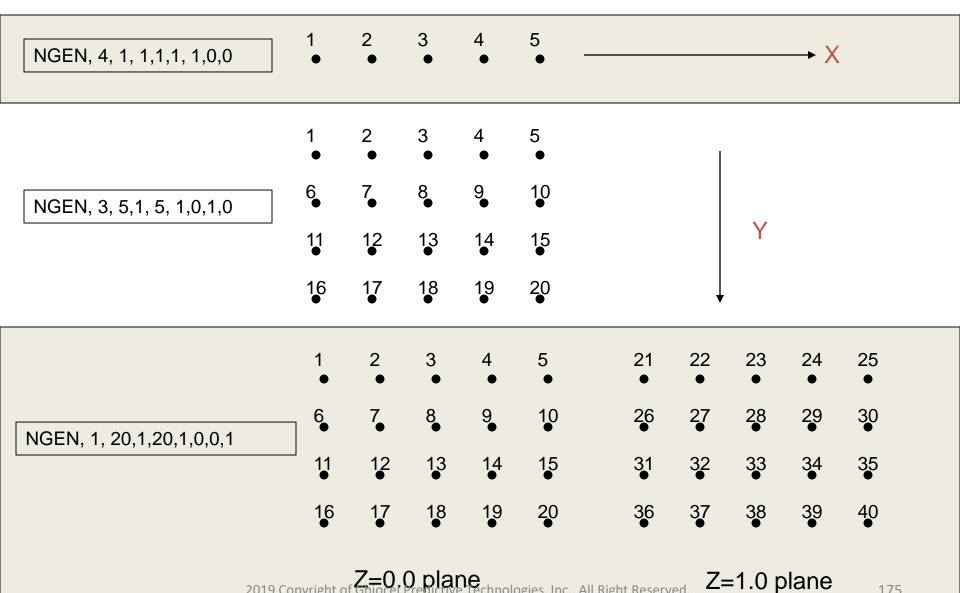
Example of ACS SASSSI .Pre Input File for Embedded Cylinder

NGEN command

• **NGEN**, *ITIME*, *INC*, *NODE1*, *NODE2*, *NINC*, *DX*, *DY*, *DZ* Generates additional nodes from a pattern of nodes.

ITIME, INC

Do this generation operation a total of *ITIME* times, incrementing all nodes in the given pattern by *INC* each time after the first. *ITIME* must be > 1 for generation to occur.

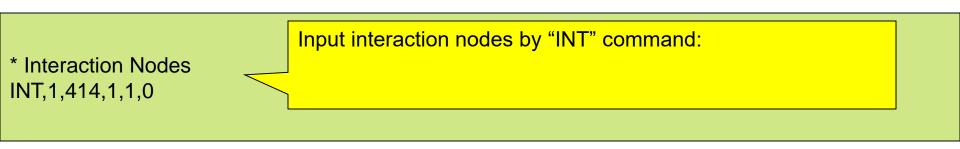

NODE1, NODE2, NINC

Generate nodes from the pattern of nodes beginning with *NODE1* to *NODE2* in steps of *NINC*

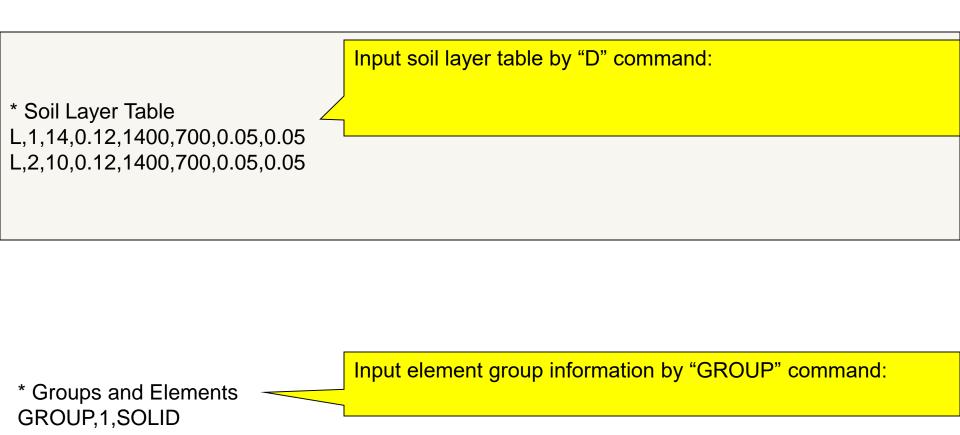
DX, DY, DZ

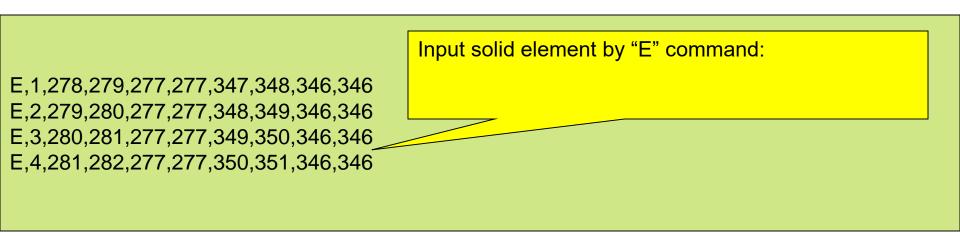
Node location increments

 $N,\,1,\ 0.0,\ 0.0,\ 0.0$

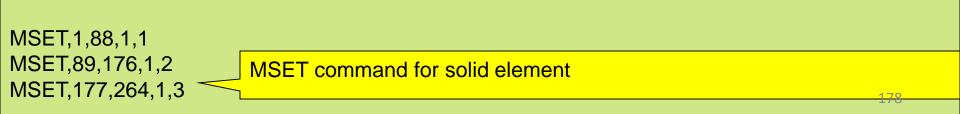


2019 Copyright of Gniocel Predictive Technologies, Inc., All Right Reserved.


175


Input constrained displacement by "D" command:

* Boundary Conditions D,1,414,1,1,ROTX,ROTY,ROTZ


* Material Table M,1,1e+012,0.2,0,0,0,1, Input material properties by "M" command:

EINT command for solid element

EINT,1,440,1,1

GROUP,2,SOLID E,1,278,279,277,277,347,348,346,346 E,2,279,280,277,277,348,349,346,346 E,3,280,281,277,277,349,350,346,346 E,4,281,282,277,277,350,351,346,346

ETYPE,1,440,1,1

EINT,1,440,1,2

MSET,1,440,1,2

"ETYPE" command for element group 2

"EINT" command for element group 2

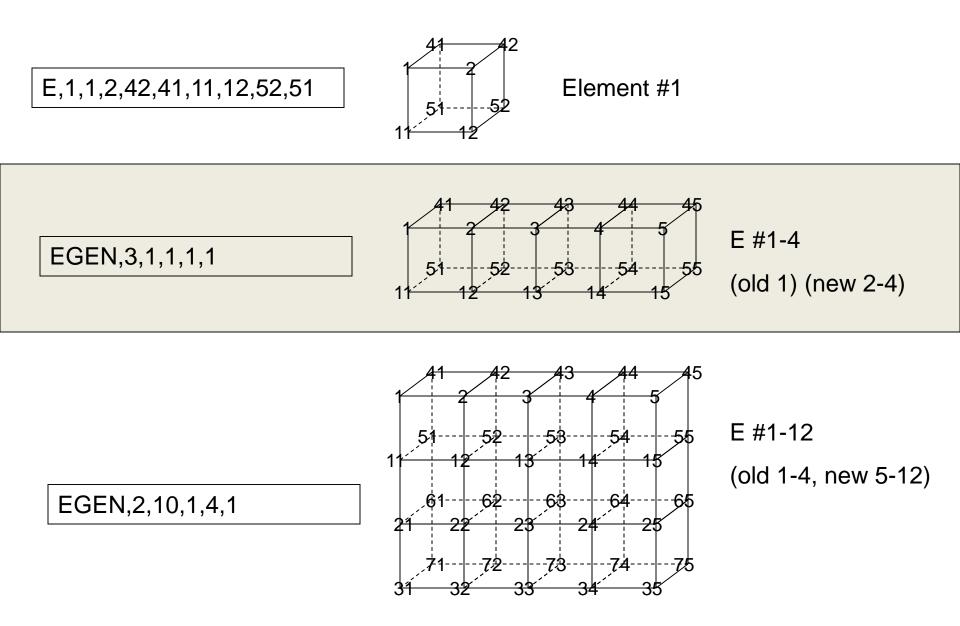
MSET command for beam element

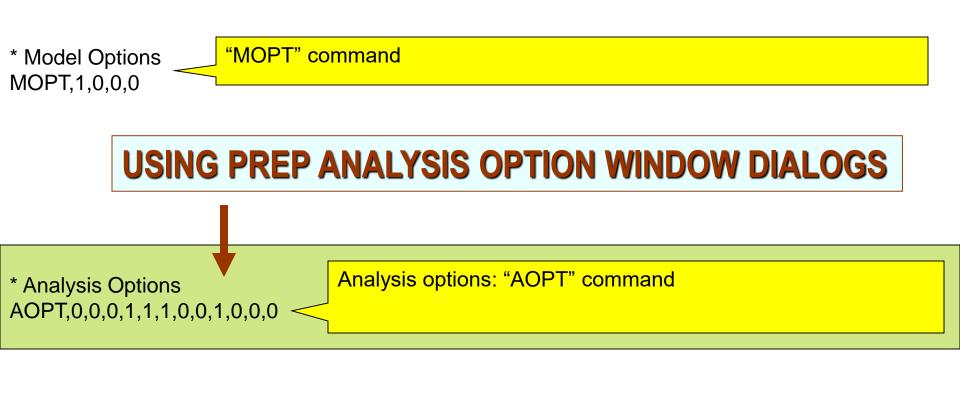
EGEN Command

• EGEN, ITIME, NINC, IEL1, IEL2, IEINC

Generates elements from an existing pattern.

ITIME, NINC


Do this generation operation a total of *ITIMEs*, incrementing all nodes in the given pattern by *NINC* each time after the first.


IEL1, IEL2, IEINC

Generate elements from selected pattern beginning with *IEL1* to *IEL2* in steps of *IEINC*

MINC

Increment material number of all elements in the given pattern by *MINC* each time after the first.

See Other .pre Input Files

4. Run Selected Demos and Describe Additional Example Problems Prepared for This Training

ACS SASSI Demo Problems

Demo Problem	Software Features		Description	
	Х	Base Software		
		Option A	Introductory demo for ACS SASSI. This demo covers bas	
Demo 1		Option AA	ACS SASSI functionality, such as loading model files, runni	
		Option PRO	modules, and basic post-processing and result visualization.	
		Option NON		
	Х	Base Software		
		Option A	This demo includes a procedure for stress post processing, including creating stress contour plot animations for critical	
Demo 2		Option AA		
		Option PRO	time steps using the ACS SASSI UI.	
		Option NON		
	Х	Base Software		
		Option A	This demo introduces macros for combination of post-	
Demo 3		Option AA	processing results, as well as using the ACS SASSI UI to	
		Option PRO	determine critical frequencies.	
		Option NON		
	Х	Base Software		
		Option A	This dame includes a precedure for performing on CCI	
Demo 4		Option AA	This demo includes a procedure for performing an SSI analysis with nonlinear soil.	
		Option PRO		
		Option NON		
	Х	Base Software		
	Х	Option A	This demo includes a procedure for for transferring SSI loads to an ANSYS model for equivalent static or dynamic analysis.	
Demo 5		Option AA	The conversion of ANSYS models to the ACS SASSI format	
		Option PRO	is demonstrated as well.	
		Option NON		
	Х	Base Software	This dama includes a presedure for an effect of the H	
	Х	Option A	This demo includes a procedure for creating soil finite element models for equivalent static linear soil pressure	
Demo 6		Option AA	analysis, and nonlinear soil pressure analysis including	
		Option PRO	foundation separation.	
		Option NON		
	Х	Base Software		
		Option A	This demo includes a procedure for performing SSI analys	
Demo 7	Х	Option AA	for surface and embedded structures using mass, stiffness,	
		Option PRO	and damping matrices from ANSYS.	
		Option NON		

Demo Problem	Software Features		Description
	Х	Base Software	
		Option A	This demo includes a procedure for computing section cut
Demo 8		Option AA	forces and moments in a shearwall structure using the ACS SASSI UI.
		Option PRO	
		Option NON	
	Х	Base Software	
		Option A	This demo includes a procedure for performing nonlinear SS analysis with Option NON for a shearwall structure. It demonstrates how to split a model into nonlinear panels and
Demo 9		Option AA	
		Option PRO	define backbone curves and nonlinear analysis options.
	Х	Option NON	,,
	Х	Base Software	
Dama		Option A	This dama includes a presedure for perferming perlinear CCI
Demo 10		Option AA	This demo includes a procedure for performing nonlinear SSI analysis for a base-isolated shearwall structure.
10		Option PRO	
	Х	Option NON	
	Х	Base Software	
Domo		Option A	This dame includes a presedure for using ANEXC MATRIXED
Demo 11	Х	Option AA	This demo includes a procedure for using ANSYS MATRIX elements in an SSI analysis in ACS SASSI.
		Option PRO	
		Option NON	
	Х	Base Software	
Demo		Option A	This demo performs a pushover analysis of a reactor building
12		Option AA	reinforced concrete containment shell
12		Option PRO	
	Х	Option NON	
	Х	Base Software	The demo includes a second we for each second in COL
Demo		Option A	The demo includes a procedure for post-processing SSI analysis results using binary databases. It includes
13		Option AA	combination of binary database, extracting text files from
10		Option PRO	databases, and creating animations from binary databases
		Option NON	
		Base Software	
Domo		Option A	This demo includes a procedure for performing coordinate
Demo 14		Option AA	transformation and strain calculations for shell elements in
		Option PRO	the ACS SASSI UI.
		Option NON	

Additional Example Problems

Example Problem	Software Features		Description		
TTODIeIII	Raco				
	Х	Software	Example of deterministic nonlinear analysis of shearwall building for 5 input sets of time histories using Option NON		
Deterministic		Option A			
Nonlinear SSI Analysis		Option AA			
		Option PRO			
	Х	Option NON			
	х	Base Software			
Probabilistic		Option A	Example of a probabilistic SSI analysis of shearwall building using Option PRO.		
SSI Analysis		Option AA			
	Х	Option PRO			
		Option NON			
Concrete	x	Base Software			
Pool Model		Option A	Example of a embedded concrete pool structure with and		
with Near		Option AA	without including near field soil.		
Field Soil		Option PRO			
		Option NON			
	x	Base Software			
Nonuniform Embedded		Option A	Example shows a nonuniform near field soil model		
Block Model		Option AA	Example shows a nonuniform near-field soil model		
Diocit Model		Option PRO			
		Option NON			
Concrete Pool	x	Base Software	Example includes a procedure for performing an SSI		
Modelling		Option A	analysis in ACS SASSI for a water concrete pool		
with ANSYS FLUID80	Х	Option AA	structure with ANSYS FLUID80 elements using		
Elements in		Option PRO	Option AA.		
ACS SASSI		Option NON			
Incoherent	х	Base Software			
Post-		Option A	Example of post-processing an incoherent SSI analysis		
Processing		Option AA	using macros in the ACS SASSI UI.		
with Macros		Option PRO			
		Option NON			

End of Slides