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To discuss some of advanced stochastic response 
approximation tools that can useful for engine applications.

The proposed hierarchical models are capable of accurately 
approximating complex stochastic response problems.

The use of hierarchical approximation models is very efficient 
when employed in conjunction with (i) stochastic ROM and for 
(ii) RBDO analysis.

Objective of this PresentationObjective of this Presentation
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4. Concluding Remarks

Content PresentationContent Presentation
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Two Major Stochastic Modeling Aspects:Two Major Stochastic Modeling Aspects:

1.  Develop Accurate Stochastic Approximation Models for High-Complexity 
Behavior Given Sample Dataset (Data-based Stochastic ROM) 
- Global and Local Accuracy in Statistical Data Space – ROM in Data Space
- For both System Inputs and Outputs

2.  Develop Fast Stochastic Simulation Models Given the Physics (PDE) and 
Stochastic Inputs (Physics-based Stochastic ROM)  
- Global and Local Accuracy in Physical Space – ROM in Physical Space
- For System Outputs

3.  Combine 1) and 2) to build efficient Stochastic ROMs for stress predictions

1.1. Basic Stochastic Mechanics IssuesBasic Stochastic Mechanics Issues
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2. Stochastic Response Surface Approximation2. Stochastic Response Surface Approximation

Implicit Formulation: Using joint PDF estimation of  
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--- Least-square fitting (    is explicit)

--- Stochastic Neural Networks (   is implicit)
Decomposes overall complex JPDF in localized simple JPDFs.
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Solution is obtained by stochastic interpolation

Explicit Formulation: Using function approximation via nonlinear regression

Convergence: Minimizing Mean Square Error (in Mean Square sense)
Causal relationship. Implicit assumption of Gaussian variations.

)(r]y[E xx =

Convergence: Using Maximumum Likelihood Function (in Probability sense)
Non causal relationship. No implicit assumption of Gaussian variations. 

SecondSecond--Order (SO) Approximation of Stochastic FieldsOrder (SO) Approximation of Stochastic Fields

HighHigh--Order (HO) Approximation of Stochastic FieldsOrder (HO) Approximation of Stochastic Fields

Defined by stochastic vector or field
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SO Stochastic Field ExpansionSO Stochastic Field Expansion
A Non-Gaussian (translation) stochastic field can be expanded:

(1) Original Space Expansion
dx ),x(u )x(u)(z

D
ii ∫ θ=θCompute Non-Gaussian Variables:

(2) Transformed Space Expansion
a. Transform Original Field in A Gaussian Image
b. Perform Expansion in Gaussian Image Space 
c. Back-Transform to Non-Gaussian Original Space

Non-Gaussian GaussianStatic
MappingCase (1) Case (2)
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TwoTwo--Level (Bayesian) Hierarchical ModelsLevel (Bayesian) Hierarchical Models

1L denoted one 
computational layer  
( stochastic FEA)

1L 1L 1L

Symbolic Representation 
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Comparison between RBF and Local PPCA ExpansionsComparison between RBF and Local PPCA Expansions

Local PPCA ExpansionLocal PPCA ExpansionRBF ExpansionRBF Expansion
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Best Fitted Fitted

Best Fitted, Simpler Best Fitted, More Refined

Model Fitting (Estimation Problem)Model Fitting (Estimation Problem)

Model Selection (Evidence Problem)Model Selection (Evidence Problem)

Optimize Model
Parameters 
Given Data

Select Most 
Plausible Model
Given Data

Stochastic Model Fitting and Selection Stochastic Model Fitting and Selection 
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Decomposition in Local Stochastic ModelsDecomposition in Local Stochastic Models Joint and Conditional Joint and Conditional PDFsPDFs ComputationComputation

Computation of ProbabilityComputation of Probability--Level Response SurfacesLevel Response Surfaces
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Stochastic vs. Fuzzy Approximation Stochastic vs. Fuzzy Approximation 

Stochastic ApproximationStochastic Approximation

Priors are assumed to be 
independent standard 
Gaussian PDF

Stochastic 2L HM Approximation 
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Fuzzy BF Approximation
Singleton fuzzifier, Gaussian 
membership functions, center 
average defuzzifier and 
product-inference rule

Fuzzy ApproximationFuzzy Approximation

∑
∑∏

∏
∑

=

=

=

==
M

1j
M

1i
iii

i

jji
i

j

M

1j
jj

)s(f)sx(f

)s(f)sx(f
)(y)(h)(yy[E xxxx]



DOWNLOAD FROM GP TECHNOLOGIES, INC., www.ghiocel-tech.com
12

SubstractiveSubstractive ClusteringClustering GustafsonGustafson--KesselKessel ClusteringClustering

Smoothed Response SurfaceSmoothed Response Surface Summation of Summation of UnweightedUnweighted Local Local JPDFsJPDFs for Xfor X
Fuzzy ClusteringFuzzy Clustering--Based Local BF ModelsBased Local BF Models
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EuristicEuristic Stochastic Field Interpolation SchemesStochastic Field Interpolation Schemes

Weighted Average Constant Interpolation (WACI)Weighted Average Constant Interpolation (WACI)
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Weighted Average Linear Interpolation (WALI)Weighted Average Linear Interpolation (WALI)
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 2D Nelson Plot

NelsonNelson
SurfaceSurface

10 Local JPDF with WACI10 Local JPDF with WACI 10 Local JPDF with WALI10 Local JPDF with WALI
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13 Local JPDFs plus WALI 7 Local JPDFs plus WALI

8 Local JPDFs plus WALI 14 Local JPDFs plus WALI

SubstractiveSubstractive Clustering with WALIClustering with WALI
NelsonNelson

RosenbrockRosenbrock
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2L HM2L HM

TwoTwo--Level Hierarchical Model Versus Level Hierarchical Model Versus KriggingKrigging with 10% Noisewith 10% Noise
50% Probability Surface50% Probability Surface

KriggingKrigging
95% Probability Surface 95% Probability Surface 
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Hamiltonian MCMCHamiltonian MCMC

Dynamic MC for Stochastic RS ApproximationDynamic MC for Stochastic RS Approximation

No particle inertiaNo particle inertia With particle inertiaWith particle inertia
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MCMCMCMC--Based Response Surface ApproximationBased Response Surface Approximation
Simulated Conditional Mean SurfacesSimulated Conditional Mean SurfacesData and Local ModelsData and Local Models

Particles Particles 
with inertiawith inertia

Remark:Remark: Confidence Intervals Depend on Local Data Density and ParticleConfidence Intervals Depend on Local Data Density and Particle Inertia! Inertia! 

Larger Particle InertiaLarger Particle InertiaLower Particle InertiaLower Particle Inertia
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Comparison of 2L and 3L (Bayesian) HM ModelsComparison of 2L and 3L (Bayesian) HM Models

MCMCMCMC--based 2L HM 10 based 2L HM 10 ClustClust BFBF 3L HM (10 3L HM (10 ClustClust BF with Point BF)  BF with Point BF)  

2L HM Point BF  2L HM Point BF  ANFIS 10 Subs ANFIS 10 Subs ClustClust BFBF
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3. Application Examples 3. Application Examples 
72 Blade Mistuned 72 Blade Mistuned BliskBlisk Response SurfaceResponse Surface

Blade 22 Max

Max of All Blades

Blade 17 Max

DOEDOE

2L (Bayesian) Hierarchical Models 

DOEDOE
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5D Highly5D Highly--Nonlinear Response SurfaceNonlinear Response Surface
Surface Sections As Functions of X1, X2 (fixed values for X3, X4Surface Sections As Functions of X1, X2 (fixed values for X3, X4, X5), X5)

Engine Compartment Pressure Response Surface  Engine Compartment Pressure Response Surface  

2L (Bayesian) Hierarchical Models 
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4. Concluding Remarks4. Concluding Remarks

1.1. Hierarchical stochastic approximation models, such as 2L and 3L Hierarchical stochastic approximation models, such as 2L and 3L HMsHMs,,
are accurate tools for response surface modeling for complex stoare accurate tools for response surface modeling for complex stochasticchastic
problems. problems. 

2. Using 2. Using HMsHMs, probability, probability--level response surfaces can be easily computed.level response surfaces can be easily computed.
They save large computational efforts in RBDO analyses.They save large computational efforts in RBDO analyses.

3. The best stochastic approximation results were obtained using3. The best stochastic approximation results were obtained using thethe
proposed 3L HM that combines a pair of two 2L proposed 3L HM that combines a pair of two 2L HMsHMs. . 

4. The current practice approaches based using quadratic regress4. The current practice approaches based using quadratic regression withion with
DOE sampling rules can be inadequate for complex stochastic respDOE sampling rules can be inadequate for complex stochastic responses,onses,
as illustrated herein (slide 20).as illustrated herein (slide 20).


