Stochastic Response Surface Approximation Using (Bayesian and Fuzzy) Hierarchical Models

Dr. Dan M. Ghiocel

Email: dan.ghiocel@ghiocel-tech.com Phone: 585-641-0379

Ghiocel Predictive Technologies Inc.

Ghiocel Predictive Technologies Inc.

1

HCF Conference, New Orleans, LO, March 8-11, 2005

Objective of this Presentation

To discuss some of advanced stochastic response approximation tools that can useful for engine applications.

The proposed hierarchical models are capable of accurately approximating complex stochastic response problems.

The use of hierarchical approximation models is very efficient when employed in conjunction with (i) stochastic ROM and for (ii) RBDO analysis.

Content Presentation

- 1. Basic Computational Stochastic Mechanics Issues
- 2. Stochastic Response Approximation
 - Two-Level Hierarchical Stochastic Models
 - Three-Level Hierarchical Stochastic Models
- 3. Application Examples
- 4. Concluding Remarks

1. Basic Stochastic Mechanics Issues

Two Major Stochastic Modeling Aspects:

- Develop Accurate Stochastic Approximation Models for High-Complexity Behavior Given Sample Dataset (Data-based Stochastic ROM)
 - Global and Local Accuracy in Statistical Data Space ROM in Data Space
 - For both System Inputs and Outputs
- 2. Develop *Fast Stochastic Simulation Models* Given the Physics (PDE) and Stochastic Inputs (*Physics-based Stochastic ROM*)
 - Global and Local Accuracy in Physical Space ROM in Physical Space
 - For System Outputs
- 3. Combine 1) and 2) to build efficient Stochastic ROMs for stress predictions

2. Stochastic Response Surface Approximation

Second-Order (SO) Approximation of Stochastic Fields

Explicit Formulation: Using function approximation via nonlinear regression

--- Least-square fitting (y is explicit)

Limited

Refined

 \frown Defined by stochastic vector or field Convergence: Minimizing Mean Square Error (in Mean Square sense) Causal relationship. Implicit assumption of Gaussian variations.

High-Order (HO) Approximation of Stochastic Fields

Implicit Formulation: Using joint PDF estimation of $z = [y, x]^T$

--- Stochastic Neural Networks (y is implicit) Decomposes overall complex JPDF in localized simple JPDFs. Solution is obtained by stochastic interpolation

Convergence: Using Maximumum Likelihood Function (in Probability sense) Non causal relationship, No implicit assumption of Gaussian variations.

SO Stochastic Field Expansion

A Non-Gaussian (translation) stochastic field can be expanded:

Example: KL/PCA Expansion

$$u(\mathbf{x}, \theta) = \sum_{i=0}^{n} \sqrt{\lambda_i} \Phi_i(\mathbf{x}) z_i(\theta) = \sum_{i=0}^{n} u_i(\mathbf{x}) z_i(\theta)$$

KL/PCA Eigen

Decomposition REDUCED STOCHASTIC SPACE

(1) Original Space Expansion

Compute Non-Gaussian Variables: $z_i(\theta) = \int u_i(x) u(x, \theta) dx$

(2) Transformed Space Expansion

- a. Transform Original Field in A Gaussian Image
- b. Perform Expansion in Gaussian Image Space
- c. Back-Transform to Non-Gaussian Original Space

Two-Level (Bayesian) Hierarchical Models

Comparison between RBF and Local PPCA Expansions

Stochastic Model Fitting and Selection Model Fitting (Estimation Problem)

Model Selection (Evidence Problem)

Computation of Probability-Level Response Surfaces

Stochastic vs. Fuzzy Approximation

$\begin{aligned} & \text{Stochastic Approximation} \\ & E[y|\mathbf{x}] = \sum_{j=1}^{M} y_j(\mathbf{x}) h_j(\mathbf{x}) = \sum_{j=1}^{M} y_j(\mathbf{x}) \frac{\prod_{i} f(x_i|s_j) f(s_j)}{\sum_{i=1}^{M} \prod_{i} f(x_i|s_i) f(s_i)} \end{aligned} \\ & \text{Priors are assumed to be independent standard Gaussian PDF} \end{aligned}$

Fuzzy Approximation

$$f(x) = \sum_{j=1}^{M} y_j b_j(x) = \sum_{j=1}^{M} y_j \frac{\prod_{i=1}^{n} a_i f_i^j(x_i)}{\sum_{j=1}^{M} \prod_{i=1}^{n} a_i f_i^j(x_i)}$$

Fuzzy BF Approximation

Singleton fuzzifier, Gaussian membership functions, center average defuzzifier and product-inference rule

Fuzzy Clustering-Based Local BF Models

DOWNLOAD FROM GP TECHNOLOGIES, INC., www.ghiocel-tech.com

Euristic Stochastic Field Interpolation Schemes

Weighted Average Constant Interpolation (WACI)

Weighted Average Linear Interpolation (WALI)

$$E[y|\mathbf{x}] = \overline{y}(\mathbf{x}) = \frac{\sum_{i=1}^{NC} y(\mathbf{x}_{i}) f_{i}(\mathbf{x}, \mathbf{x}_{i}) p_{i}}{\sum_{i=1}^{NC} f_{i}(\mathbf{x}, \mathbf{x}_{i}) p_{i}} = \frac{\sum_{i=1}^{NC} (\mathbf{a}_{i}^{T} \mathbf{x} + b_{i}) f_{i}(\mathbf{x}, \mathbf{x}_{i}) p_{i}}{\sum_{i=1}^{NC} f_{i}(\mathbf{x}, \mathbf{x}_{i}) p_{i}}$$
$$E[y|\mathbf{x}] = \overline{y}(\mathbf{x}) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} E_{i,j}[y|\mathbf{x}] f_{i,j}(\mathbf{x}) \mu_{i,j}}{\sum_{i=1}^{n} \sum_{j=1}^{m} f_{i,j}(\mathbf{x}) \mu_{i,j}} = \sum_{i=1}^{n} \sum_{j=1}^{m} (\mathbf{a}_{i,j}^{T} \mathbf{x} + b_{i,j}) h_{i,j}(\mathbf{x})$$

13

DOWNLOAD FROM GP TECHNOLOGIES, INC., www.ghiocel-tech.com

Substractive Clustering with WALI

8 Local JPDFspollshare IROM GP TECHNOLOGIES, 14CL, ocal ghe DeFiscplus WALI

Two-Level Hierarchical Model Versus Krigging with 10% Noise

Dynamic MC for Stochastic RS Approximation

MCMC-Based Response Surface Approximation

Simulated Conditional Mean Surfaces

Remark: Confidence Intervals Depend on Local Data Density and Particle Inertia!

Comparison of 2L and 3L (Bayesian) HM Models

2L HM Point BF

ANFIS 10 Subs Clust BF

3L HM (10 Clust BF with Point BF)

Engine Compartment Pressure Response Surface

5D Highly-Nonlinear Response Surface

Surface Sections As Functions of X1, X2 (fixed values for X3, X4, X5)

4. Concluding Remarks

1. Hierarchical stochastic approximation models, such as 2L and 3L HMs, are accurate tools for response surface modeling for complex stochastic problems.

2. Using HMs, probability-level response surfaces can be easily computed. They save large computational efforts in RBDO analyses.

3. The best stochastic approximation results were obtained using the proposed 3L HM that combines a pair of two 2L HMs.

4. The current practice approaches based using quadratic regression with DOE sampling rules can be inadequate for complex stochastic responses, as illustrated herein (slide 20).