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Objective of this Presentation

To discuss the application of a powerful stochastic subspace
projection scheme for solving mistuning problems in bladed-
disks via reduced-order modeling (ROM).

The proposed stochastic subspace projection scheme called the
Stochastic Perturbation Matrix (SPM) approach provides an
efficient tool for accurately solving large (and small) random
mistuning problems, for both LO and HO system modes.
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1. Computational Stochastic Mechanics Issues

Two Major Stochastic Modeling Aspects:

1. Develop Accurate Stochastic Approximation Models for High-Complexity
Behavior Given Sample Dataset (Data-based Stochastic ROM)
- Global and Local Accuracy in Statistical Data Space — ROM in Data Space
- For both System Inputs and Outputs

2. Develop Fast Stochastic Simulation Models Given the Physics (PDE) and
Stochastic Inputs (Physics-based Stochastic ROM)
- Global and Local Accuracy in Physical Space — ROM in Physical Space
- For System Outputs

3. Combine the Statistics-based and Physics-based Stochastic ROMs

4
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Statistics-based Stochastic ROM
Second-Order (SO) Approximation of Stochastic Fields

Explicit Formulation: Using function approximation via nonlinear regression

g ‘ y‘x = r(x) + &(x) --- Least-square fitting (Y is explicit)

Stochasticity defined by second-order random vector/field of residuals

X, E[y‘x] =1(X) Limited
Convergence: Minimizing Mean-Square Error (in Mean-Square sense)
Causal relationship

High-Order (HO) Approximation of Stochastic Fields

Implicit Formulation: Using joint PDF estimation of  z=[y,x]'

y f _ f(y’ X) _ . N . o
(vpo) = o - Stochastic Networks (yis implicit)
Decomposes overall complex JPDF in localized simple JPDFs.
, X

- E[Y‘X] = ny(Y‘X)dy Refined

Convergence: Using Maximumum Likelihood Function (in Probability sense)

Non-causal relationshi >
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HO Stochastic Field Expansion in Local JPDF Models

Measured Values for Point 2 and 11 - Decomposition in Multiple Local PCA Medels
wi0” Measured Values - Point 2 and Point 11 wi0”
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Stochastic Physics-based ROM

The development of efficient Stochastic Physics-based ROMs includes:

1) Partitioning the original physical stochastic domain into subdomains
(stochastic domain decomposition, substructuring)

2) Projecting the original stochastic solution onto reduced-size stochastic
subspaces (stochastic projection, physics-based ROM)

Remark:

Physics-based stochastic ROM are extremely robust in comparison with perturbation
methods (Taylor expansion, Neumann expansion, etc.) that are limited to local
variations within the convergence radius of functions

Example:
CMU SNM Approach for mistuning uses a solution projection in an Eigen subspace.
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2. Stochastic Perturbation Matrix Projection

Large Mistuning vs. Small Mistuning
The equations of motion in physical coordinates are Stochastic

[Kiw(C+G)—m2(MZa]a=F Model
Small (Frequency) Mistuning (standard ROM) assumes: \
AK = K ¢ = K g1 = Kg - proportional variation with ¥
Notes: - Matrix €is diagonal (same value for the blade/sector DOFs).

- Deviation € is applied to E modulus (is the same for all DOFs)
- “Local” blade modes maintain their shapes

Large (Mode Shape) Mistuning (input calibration for ROM) assumes:
AK = K¢ - non-proportional variation with ( Kand M ) ’@
Remark:- Matrix €is non-diagonal. It can be computed € = K AK

- Deviation € is applied to K(and M) (is different for each DOF)

- “Local” blade modes may change their shapes. 8
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Stochastic Perturbation Matrix Subspace Projection
Stochastic FEA Problem:
K(X)u(x)=F

For a random realization k of stochastic input vector X we can rewrite
[K +AK(x)Ju(x,) =F

The GPA subspace projection of the stochastic solution is:

Few terms
u(xk) — Z yJ'(Xk needed!
]

Note:

The expansion is fast-convergent if the probability densities of random eigen
values of the matrix K '[K +AK(x, )] are highly overlapping; only few
terms are needed, or equivalently the GPM ROM size is very reduced.
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3. The 72 Blade Compressor Blisk Example
PDF of Mistuned Rotor Blade Tip Amplitude Responses

Disk with nominal stiffness, 0.5% stdev

Disk 10 times stiffer, 0.5% stdev
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Stochastic Perturbation Matrix ROM Solution

for A 72 Blade Blisk System
LO Bending Blade Mode Family Mistuning

Blade Tip Amplitude Transfer Function

Full Analysis vs. Krylov Subspace Projection (KSP ROM)
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SPM ROM Solution for Modified Blisk System
LO Bending Blade Mode Mistuning for Modified Disk (Stiffer)
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SPM ROM Solution Robustness Study

Multiple Starting Single Starting
Frequency Points Frequency Point

K(o, At) = K(m)+AK(w, At) K(o*+Awm, At) = K(0*)+ AK(0* +A, At)
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Slngle Frequency Pomt SPM ROM Solutlon

KSP ROM
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Single Frequency Point SPM ROM Solution

Comparizson of Full Analysis vs. Krylov Expansion for Wheel & Al lterations
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Single FrequencyP{oi{nﬁtSPM Solution
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Application of SPM ROM Approach to
Maintenance of Geometrically Mistuned IBRs

Full Analysis for All Blades
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SPM ROM for Studying Blade Geometry Variation Effects

Uniform distribution, Far Blades, Response at Blade #22 Unifarm distribution 3%, Meighbor blades, Response at Blade #17
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4. Concluding Remarks

Stochastic projection schemes represent systematic mathematical
procedures for building powerful physics-based stochastic ROMs that
are highly applicable to bladed-disk mistuning problems.

For large mistuning problems, the proposed Stochastic Perturbation Matrix
(SPM) approach is an extremely accurate and fast prediction tool. SPM
ROM has an extremely fast convergence, since the size of the required
ROM is very reduced. For the illustrated (mean-based PC) 72 blade blisk
system case study, the typical SPM ROM size for computing accurate
results was from 5 to 20 equations.

. The SPM ROM approach is perfectly fitted for solving large mistuning

problems, for both low-order and high-order system modes, including
complex dynamic couplings in veering regions. The author believes that
the SPM ROM approach will play a gradually increasing role in future for

solving difficult, large mistuning problems. 19
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