
 

 

 Transactions, SMiRT-24 

BEXCO, Busan, Korea - August 20-25, 2017 

Division V, Paper 406 

 

NEW ASCE 4 STANDARD-BASED PROBABILISTIC SOIL-STRUCTURE 

INTERACTION (SSI) ANALYSIS FOR SEISMIC DESIGN-BASIS 

ANALYSIS AND FRAGILITY CALCULATIONS  
 

Dan M. Ghiocel1 

 
1 Chief of Engineering and President, Ghiocel Predictive Technologies, Inc., New York, USA 

 

INTRODUCTION 

 
Probabilistic soil-structure interaction (SSI) analysis is capable of capturing in much more detail the 

uncertainties related to the seismic motion, soil layering and structural behaviour than deterministic SSI 

analysis. In the introduction of the new ASCE 04-2016 standard (2017) it is stated that the purpose of the 

analytical methods included in the standard is to provide reasonable levels of conservatism to account for 

seismic analysis uncertainties.  More specifically, in the same section it is written that given the seismic 

design response spectra input, the goal of the standard is that based on a set of recommendations to 

develop seismic deterministic SSI responses which correspond approximately to the 80% non-exceedance 

probability level (NEP).  Thus, for seismic SSI analyses, the probabilistic responses defined with the 80% 

NEP are considered adequate. The paper illustrates the application of the new ASCE 04-16 standard 

recommendations for probabilistic SSI analysis applicable to both the design-basis level (DBE) 

applications and the beyond design-basis level (BDBE) applications including fragility analyses. The 

ACS SASSI software (2016) with Options PRO and NON is used for this paper. 

 

PROBABILISTIC MODELING PER ASCE 4-16 STANDARD 

 

The ASCE 4-16 standard Section 5.5 (ASCE, 2017) recommends for probabilistic SSI analysis the 

application of stochastic simulation using the Latin Hypercube Sampling (LHS). The ASCE 4-16 

standard addresses both the probabilistic site response analysis (PSRA) and the probabilistic SSI analyses 

(PSSIA) in Sections 2 and 5.5, respectively.  

 

Probabilistic modelling should usually include the random variations due to:  

- Response spectral shape model for the seismic input   

- Low-strain soil shear wave velocity Vs and hysteretic damping D profiles for each soil layer   

- Soil layer shear modulus G and hysteretic damping D as random functions of soil shear strain   

- Equivalent linear/effective stiffness and damping for concrete structural elements depending on 

stress/strain levels in different parts of the structure    

  

The ACS SASSI Option PRO modules include the above probabilistic modelling aspects following the 

ASCE 4-16 standard recommendations for both PSRA and PSSIA (Ghiocel, 2015). Figure 1 shows a 

generic chart of the Option PRO PSSIA simulations.   

 

For the probabilistic SSI response simulations, the input is represented as an ensemble of randomized 

seismic input motion sets. Each set consists of two horizontal components and one vertical component. 

The seismic motion spectral amplitude is assumed to be a lognormally distributed random variable or 

vector/field. Option PRO includes two probabilistic simulation methods for generating input acceleration 

time histories that are recommended in the ASCE 04-2016 standard Section 5.5 (Figure 2):  

1) Method 1 that assumes that spectral shape is deterministic, constant shape curve, and   

2) Method 2 that assumes that spectral shape is a random, variable shape curve.   
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Figure 1    Probabilistic Seismic SSI Analysis Chart     Figure 2 Probabilistic Seismic GRS Models 

 

The low-strain Vs and D per soil layers are assumed to be statistically dependent lognormal or normal 

random variables. The statistical dependence is due to their joint dependence on the soil shear strain in 

each layer. In Option PRO, there are several options implemented to address the Vs and D statistical 

dependence. Each geological layer including several computational soil layers can be defined with 

different statistics, as means, coefficients of variation and correlation lengths. Thus, in general, the soil 

profiles are made of several segments for which the soil profile spatial correlation with depth is assumed 

to be constant. The soil profile simulations are based on the probability transformed-space Karhunen-

Loeve expansion models (Figure 3). 

 

    
 

Figure 3 Probabilistic Soil Property Profile Models   Figure 4 Probabilistic Soil Material Curves 

  

The soil Vs and D profiles are assumed to be either i) Model 1, 1D random field with a spatial correlation 

structure with depth, or ii) Model 2, a random field mixture of a short-wavelength 1D component and a 

large-wavelength 1D component. The first modelling option produces ergodic field samples, while the 

second modelling option produces non-ergodic field samples since it contains two sources of 
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uncertainties. The Model 2 was also recommended by the Princeton university researchers based on 

various soil field measurements (Popescu, 1996). The selection of the soil profile model should be made 

based on the Vs field measurements on the site. The soil shear modulus G and damping D curves as 

functions of the soil shear strain in each layer, are modelled as 1D random field models with slow-

variations or large wavelength in the shear strain space (Figure 4). 

 

For structural modelling, the effective stiffness and damping values in the concrete walls should be 

defined as separated random variables for different parts of the structure which have different local 

stress/strain levels. Defining the effective stiffness and damping for each wall could be a labour intensive 

activity since for each seismic simulation, the stress/strain levels in the structure may vary substantially. 

The ACS SASSI Option NON can be used to automatically compute the effective stiffness and damping 

in the concrete walls as function of the local shear or bending strain. 

   

The ACS SASSI Option PRO includes a number of seven probabilistic modules that generate the LHS 

randomized samples for the PSSIA input. These probabilistic modules include the ProEQUAKE, 

ProSOIL, ProSITE, ProHOUSE, ProMOTION, ProSTRESS and ProRESPONSE modules. A 

probabilistic analysis, either PSRA or PSSIA, there are three distinct steps to be completed: 1) Generate 

an ensemble of simulated probabilistic input files using LHS with the Option PRO pre-processing 

modules, 2) Run the ensemble of LHS sample input files to compute the corresponding SSI response files 

with the ACS SASSI main software modules, and 3) Post-process statistically the ensemble of the LHS 

responses with the Option PRO post-processing modules.  

 

DESIGN-BASIS LEVEL (DBE) CASE STUDY  

 
Probabilistic and deterministic SSI analyses were comparatively performed for a deeply embedded SMR 

SSI model. The probabilistic SSI analyses assumed that the spectral shape of the site-specific ground 

response spectra, the soil stiffness and damping profiles were idealized as random fields. The structural 

stiffness and damping random variations were modelled as a pair of correlated random variables that 

depend on the computed structural stress levels. The comparative SSI results include in-structure response 

spectra (ISRS) at different locations. The probabilistic SSI analysis results for the mean ISRS and 84% 

NEP ISRS (slightly higher than the 80% NEP ISRS) are compared with the deterministic SSI analysis 

envelope ISRS computed including the three deterministic soil  profile variations, namely, lower bound 

(LB), best-estimate (BE) and upper bond (UB).   

 

 
 

Figure 5 140 ft Embedded SMR SSI Model 
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Figure 5 shows the deeply embedded SMR SSI model. The SMR structure has a size of 200ft x 100ft x 

100ft (H x L x W) with an embedment of 140ft depth (Ghiocel, 2014). The soil profile shown in Figure 6 

is highly non-uniform with a soil layer stiffness variation inversion within the embedment depth. The 

seismic motion was input at the SMR foundation level (FIRS) at the 140 ft depth (elevation 0 ft).  

 

For probabilistic analyses, the in-column FIRS input motion were computed based on the probabilistic 

site response analysis using 60 LHS samples. The 60 randomized soil profiles are plotted in Figure 6. For 

statistical segments were considered for soil profile modelling. Both the Model 1 and the Model 2 were 

comparatively used for the soil profile probabilistic modelling. The statistics of the Vs and D soil profiles 

have variation coefficients of 20% and 30%, respectively. The Vs and D statistical dependence as 

function of soil shear strain level is captured by a coefficient of correlation of -0.40. The smoothness of 

the soil variation profiles was controlled by the correlation length parameters that vary with depth (for the 

four segments). The correlation lengths were considered 40 ft for the segments 1 and 3 down from the 

ground surface and 100 ft for the segments 2 and 4. These correlation length values were used for both the 

Model 1 and the Model 2 short-wavelength component variations. As shown in Figure 6, the probabilistic 

seismic input was defined by the outcrop UHRS motion simulated at the 500 ft depth bedrock.  

 
 

Figure 6 Vs Soil Profile Simulations; Random Samples (black), Simulated Statistical Curves (blue)  

Versus Target Statistical Curves (green) 

 

The 60 simulations of the in-column FIRS obtained using PSRA are shown in Figure 7. The simulated in-

column FIRS motions were further used for the PSSIA of the SMR structure.   It should be noted that the 

two soil profile models, Model 1 and Model 2 (Figure 6), produce slightly different FIRS shapes for the 

random samples and the mean curves. 
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Probabilistic SSI ISRS results are shown in Figures 8 through 10. Each figure includes comparative ISRS 

probabilistic 84% NEP ISRS vs. deterministic ISRS for the two profile models, Model 1 and Model 2.  

 

It should be noted that the deterministic seismic inputs are defined by the in-column FIRS computed for 

the LB, BE and UB soils based on the (probabilistic) mean outcrop UHRS FIRS obtained for the 60 

probabilistic site response simulations. Thus, the deterministic SSI analysis is not based on the DRS FIRS 

input  that is used in the “conventional” deterministic design-basis seismic analysis, that is a combination 

of the UHRS FIRS computed for two annual seismic hazard probabilities, namely, 1.e-4 and 1.e-5, as 

described in the ASCE 43-05 standard and its new ASCE 43-17 draft.  

 

It should be noted that in general, the comparison of probabilistic and “conventional” deterministic SSI 

analysis results depends on the seismic hazard level considered for the probabilistic simulations. If the 

1.e-4 annual seismic hazard probability is considered, then, the deterministic SSI results should go up by 

the ratio DRS/1.e-4 UHRS, while if the 1.e-5 annual seismic hazard probability is considered, the 

deterministic SSI results should go down by the ratio 1.e-5 UHRS/DRS. To avoid any confusion, the 

deterministic seismic input was defined by the same (probabilistic) mean UHRS/FIRS computed from 

probabilistic simulations, and not by the DRS/FIRS.  

 

 
 

Figure 7 Simulated FIRS Using Model 1 (left) and Model 2 (right); Samples (black) and Mean (blue) 

 

For probabilistic structural modeling, it was considered that the entire SMR model has the same effective 

stiffness and damping modeled as lognormal random variables. The effective stiffness was assumed with 

a mean of 0.80 times the elastic stiffness and a c.o.v of 10%, while the effective damping was assumed 

with a mean of 6% and a c.o.v. of 30%. The statistical dependence between the two variables was 

included by a negative correlation coefficient of -0.80. For deterministic structure modeling the uncracked 

stiffness and 4% damping were assumed.  

 

Figures 8 thru 10 show comparisons of the deterministic ISRS for the LB, BE and UB soils, (red lines, 

with solid line for BE soil) and the probabilistic mean and 84% NEP ISRS (green lines, solid line for 

mean values) at 0ft elevation (basemat level) and 170ft elevation (30ft above ground level). The left side 

plots of the Figures 8 through 10 show the ISRS results based on the Model 1 soil profile (Figure 6, upper 

plot), while the right side plots show results based on the Model 2 soil profile (Figure 6, lower plot). It 

should be noted that the probabilistic model used for the simulation of the soil profiles affects slightly 

both the probabilistic and the deterministic ISRS. The deterministic soil profiles of Vs and D correspond 

to the 16%, mean, and 84% NEP statistical estimates, and, therefore, they are affected by the probabilistic 

soil profile modelling using Model 1 or Model 2. 
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Figures 8 and 9 show the ISRS computed at 0ft elevation (basemat) for the horizontal direction and 

vertical direction, respectively. The blue arrows on the plots indicate frequency bands for which some 

discrepancy between the probabilistic 84% NEP ISRS and the deterministic envelope ISRS are noticed. 

For the horizontal direction, as shown in Figure 8, at lower frequencies the probabilistic 84% NEP ISRS 

are slightly larger, up to 20% for Model 2, while in the high-frequency range, above 10 Hz, the 

deterministic ISRS, especially for the UB soil, has a much larger peak amplitude than the probabilistic 

84% NEP ISRS, possibly with a 100% increase or even more. For the vertical direction, as shown in 

Figure 9, similar trends are noticed. 

 

Figure 8 ISRS plots also indicate that the deterministic soil profiles, LB, BE and UB, produce a highly 

amplified SSI analysis responses in the 20-30 Hz range, since these profiles are basically outside of the 

range soil profile random variations. This is due the fact that producing a randomized soil profile that is 

similar to the deterministic soil profiles for which all soil layers are being simultaneously stiffer or softer, 

has a very low likelihood, or in other words, the deterministic soil profile corresponds to a small 

occurrence probability within the random sample space. In deterministic SSI analysis, the soil profiles 

have an implicit occurrence probability of unity since it corresponds to a sure event.  

 

 
Figure 8 Horizontal ISRS at the Basemat Level Using Model 1 (left) and Model 2 (right) for Soil Profiles 

 

 
Figure 9 Vertical ISRS at the Basemat Level Using Model 1 (left) and Model 2 (right) for Soil Profiles 
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Figure 10 shows the horizontal ISRS computed at 170ft elevation (30ft above ground level). The 

deterministic envelope ISRS spectral peak, in fact only for the UB soil, is much larger than the 

probabilistic 84% NEP ISRS, about 50% larger. This significant difference between the deterministic and 

probabilistic ISRS is mainly due to the 4% low damping value used for the deterministic SSI analysis for 

the uncracked concrete that is lower than the randomized damping values assumed with a statistical mean 

of 6% for the probabilistic SSI analysis. It should be also noted that the deterministic envelope ISRS peak 

is at 7 Hz, while the probabilistic 84% NEP ISRS peak is at 5.5 Hz that is about 20% lower than the 

deterministic envelope ISRS peak. Also, the LB soil ISRS peak occurs at a frequency of 4.3 Hz, the BE 

soil ISRS peak occurs at 5.5 Hz, and the UB soil ISRS peak occurs at 7.0 Hz. The peak frequency shifts is 

about +/- 20% around the BE soil ISRS peak frequency. This 20% frequency shift raises the question if 

the traditional 15% ISRS broadening recommended in the ASCE standards is sufficient for the deeply 

SMR applications.  

 

 
Figure 10 Horizontal ISRS at 30ft Above Ground Level Using Model 1 (left) and Model 2 (right) 

 

The large horizontal deterministic ISRS peaks noticed in Figures 8 and 10 could appear to be a penalty of 

the deterministic SSI analysis on the economical aspects of the nuclear design. There is a urgent need for 

having more comparative probabilistic-deterministic investigations based on the ASCE 4-16 standard 

recommendations for various case studies. 

 

BEYOND DESIGN-BASIS LEVEL (BDBE) CASE STUDIES 

 

ASCE 4-16 Standard-Based Probabilistic SSI Analysis for Seismic Fragility and Risk Computations 

     

Probabilistic SSI analyses for the beyond design-basis (BDBE) applications are typically performed for 

seismic input review levels that are much larger than the design-basis (DBE) seismic input, often by 2-3 

times. For such much larger BDBE seismic inputs, the role of the nonlinear soil and structure behaviours 

become very important SSI modelling aspects for obtaining meaningful seismic margin results.  Herein, 

the application of the probabilistic SSI analysis per the new ASCE 4-16 standard is presented in the 

context of the seismic fragility analyses.  

 

The new ASCE 4-16 standard provides a probabilistic physics-based modelling framework for computing 

seismic SSI response variations that is a good basis for adequately deriving the fragility analysis data, and 

by this to substantially reduce the “expert” subjectivity. The “expert” subjectivity”, in many situations, 

can introduce significant, artificial biases in the SSC seismic margin evaluations which can be sometimes 

too crude, or even inappropriate on a case-by-case basis.  
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An accurate seismic fragility analysis should include several seismic hazard levels or review levels, not 

only a single seismic hazard level or review level. At the least, three seismic hazard levels or review 

levels should be considered as acceptable. For performing a pertinent probabilistic SSI analysis per the 

new ASCE 4-16 recommendations, probabilistic models for the seismic input motion, the soil profile and 

the structure should be defined for each seismic hazard level, as briefly described below:  

 

- Probabilistic outcrop UHRS SEISMIC input at the bedrock should be defined for each review 

level. Usually, at the least three levels, 1e-4, 1e-5 and 1e-6 should be considered for the seismic 

hazard annual probability. Based the PSHA studies, the deaggregated bedrock UHRS inputs 

should be defined for the governing seismic events as functions of the magnitude and epicenter 

distance. Probabilistic models should assume that the bedrock UHRS frequency content has 

random variations. 

 

- Probabilistic SOIL layer profiles should be defined for each review level are necessary. 

Probabilistic models should include at the least the shear velocity Vs, and damping D soil profiles 

and the material constitutive curves applicable for the soil condition sites. For the soil sites, the 

nonlinear soil behavior should be included for each review level and each seismic input 

simulation.  

 

- Probabilistic STRUCTURE material properties, namely, the effective stiffness and damping, 

should be defined for each review level. Probabilistic models should include the effective 

stiffness and damping variations. Since the effective/equivalent-linear stiffness and damping 

properties are functions of the stress/strain level, their values are different for different parts of 

the structure. The nonlinear structure behavior should be included for each review level and each 

seismic input simulation.  

 

The seismic hazard curve considered for the investigated case study that is for a rock site is shown in 

Figure 11. The maximum ground acceleration levels vary from 0.10g to 1.60g. The DBE level 

corresponds to the outcrop UHRS defined for a 0.25g maximum ground acceleration in the horizontal 

direction. The seismic hazard curve is used to define seven seismic hazard or review levels which 

correspond to the annual mean occurrence probabilities of 3.2.e-4, 1.0e-4, 3.2e-5, 1.0e-5, 3.2e-6, 1.0e-6 

and 3.2e-7. The c.o.v. values associated to the seismic hazard curve are plotted by the yellow-brown line 

and vary from 50% at 0.10g to 100% at 1.60g. 

 

 
Figure 11 Seismic Hazard Curve for Investigated Rock Site 
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To compute the total seismic risk or failure probability curves for SSCs, the seismic hazard curve slope 

should be “convolved” with the SSC fragility curves as illustrated in Figure 12. The overall predicted risk 

including all seismic hazard events is finally obtained by integrating the total risk curve over the entire 

ground acceleration axis. It should be noted that the seismic hazard and fragility curves are affected by the 

epistemic or modelling uncertainties. These uncertainties are illustrated in Figure 12 by the probability 

density functions (blue colour areas) and their random samples (black lines). These uncertainties are 

further propagating to the total risk curves and, finally, to the overall predicted risk, Pf, affecting its 

confidence interval. The overall predicted risk should be determined with high confidence levels, since 

usually the overall risk estimate has large uncertain variations. 

 
Figure 12 Total Seismic Risk Prediction Chart 

 

The epistemic or modeling uncertainties were computed using the probabilistic seismic response 

variations for two sets of probabilistic SSI analysis, as follows: 

 

1) Probabilistic SSI analysis including total or composite probabilistic variations composed by the 

superposition of the randomness variations and the epistemic or modeling uncertainty variations; 

 

2) Probabilistic SSI analysis including only the random variations (with no epistemic uncertainties). 

 

The epistemic or modeling uncertainty variations can be computed by subtracting the random variations 

from the total or composite variations of the seismic responses. The simulation procedure permits an 

accurate evaluation of the epistemic uncertainty variations based on computing the epistemic uncertainty 

variates for each pair of the 60 probabilistic response simulations produced in steps 1) and 2). 

 

The probabilistic SSI analysis was performed for each of the seven selected seismic hazard or review 

levels using the ACS SASSI Option PRO software (2016). Figure 13 shows the 60 probabilistic outcrop 

UHRS input simulations which were used for the PSRA and the PSSIA computations for the 0.25g 

(design-basis) seismic hazard level input. 

 

For each UHRS simulation, a spectrum compatible acceleration time history was generated. Since the 

investigated site is a rock site, the nonlinear soil behavior effects are negligible. For random variations, 

the UHRS amplitude was assumed to be a lognormal random variable with the mean equal to mean 

UHRS and a c.o.v. of 28%.  The ASCE 4-16 Section 5.5 Method 2 with randomized UHRS spectral 
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shapes was applied (ProEQUAKE module). The correlation length was taken 10 Hz. To include the 

epistemic uncertainties a lognormal random factor with mean of 1.0 and c.o.v. of 25% was applied.   

 
Figure 13 Probabilistic Horizontal and Vertical UHRS Simulations for 0.25g Seismic Input Level 

 

The 60 probabilistic soil layering simulations are shown in Figure 14. For the randomness variations, the 

soil profile probabilistic modelling was based on the Model 2 that includes a mixture of two lognormal 

random field components, with a short wavelength and a long wavelength, respectively. The c.o.v. of the 

Vs and D soil profiles were 20%, with a c.o.v. of 14% for the short wavelength component and a c.o.v. of 

15% for the long wavelength component. The correlation length were 100 ft for short wavelength 

component and 1000 ft for long wavelength component.  

 
 

Figure 14 Vs Soil Profile Simulations for Random and Composite Variations 

 

The statistical dependence between Vs and D was simulated by a correlation coefficient of -0.40. For the 

epistemic uncertainty variations of Vs and D profiles, lognormal random scale factors with a mean of 1.0 

and c.o.v. of 30% and 40%, respectively, were considered. 
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The investigated concrete shearwall nuclear building used for probabilistic SSI analysis is shown in 

Figure 15. For the seismic inputs associated with seismic hazard levels which are well beyond the 0.25g 

design-basis level, up to 1.60g, the nonlinear structure behaviour is an important aspect of the SSI 

modelling. For the probabilistic nonlinear SSI analysis, the ACS SASSI Options NON and PRO modules 

were combined.  

 

To include the nonlinear concrete behaviour, the structure model has to be split in a number of wall 

“panels”. The wall panel is part of the concrete shearwall that is under a relative uniform shear or bending 

deformation. Herein, the investigated nuclear building nonlinear model included 40 wall panels, as shown 

in Figure 15 (Ghiocel, 2015, Ghiocel and Saremi, 2017). 

 

 
Figure 15 Low-Rise Reinforced Concrete Shearwall Building Nonlinear Model With 40 Wall Panels  

(the Basemat, Roof and Longitudinal External Wall are Removed) 

 

For each nonlinear wall panel, a back-bone curve (BBC) has to be defined. The BBC curves should have 

a smooth shape and variation that describes the nonlinear behaviour of the wall panels under the lateral 

seismic loading. The smoothed BBC were automatically generated based on the input data on the 

cracking and ultimate capacity shear force values and assuming that the secant cracked stiffness between 

the cracking and yielding points is half of the uncracked stiffness as recommended in the ASCE 4-16 

(Ghiocel and Saremi, 2017).   

 

Figure 16 shows the 60 probabilistic simulations of the BBC for a given wall panel. The BBC were 

assumed to vary randomly assuming a lognormal random factor with mean of 1.0 and the c.o.v. of 15% 

for random variations and a c.o.v. of 33.5% for composite variations. 

 

For the nonlinear hysteretic behaviour the Cheng-Mertz shear (CMS) hysteretic model was used (Ghiocel, 

2015). This CMS hysteretic model is a part of the ACS SASSI Option NON library of hysteretic models.   

Figure 17 shows the CMS hysteretic shear force-shear strain loops for two different wall panels. 

 

The shear strain capacities of the wall panels were assumed to have lognormal probability distributions 

with the mean of 0.5% and c.o.v. of 35% for random variations and c.o.v. of 45% for composite 

variations, respectively. The lognormal reliability model used to compute the wall shear failure 

probabilities (or fragilities) is described in Figure 18. 
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Figure 16 Back-Bone Curve (BBC) Simulations  Figure 17 Cheng-Mertz Shear Hysteretic Loops 

 

    
 

Figure 18 Shear Wall Failure Reliability Model            Figure 19 Wall Shear Strain Statistical Responses 

 

Figures 19 through 22 shows the results obtained for the structural fragility analysis based on the physics-

based probabilistic nonlinear SSI response simulations using the combined ACS SASSI Options PRO and 

NON software modules. Figure 19 shows the mean and 84% NEP shear strains computed in the 

transverse wall Panel 17 (see Figure 15 for panel locations) based on the random variations and the 

composite variations, respectively. All seven seismic review levels are included in Figure 19. 

 

Figure 20 shows the hysteretic behaviour of Panel 17 for the 0.95g seismic hazard level for the random 

and composite variations, respectively, for the largest (blue) and smallest (red) story drift simulations.  
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Figure 20 CMS Hysteretic Loops for 0.95g Review Level for Largest (blue) and Smallest (red) Simulated 

Responses; For Random Variations (left plot) and For Composite Variations (right plot) 

 

Table 1 shows the epistemic uncertainty variations (U) computed based the two separate physics-based 

probabilistic nonlinear SSI analysis results obtained for the random variations (R) only, and the total or 

composite variations (C) including both random and epistemic uncertainty variations, respectively. The 

epistemic uncertainty variations for each response quantity of interest was computed for each 

probabilistic simulation j by Uj = Cj/Rj, as defined in the lognormal fragility format, where Cj is the 

simulated response including the composite variations and Rj is the simulated response including only the 

random variations. Then, based on the Uj responses for all the 60 simulations, j=1,60, the statistics of the 

U variable, the Umean and U c.o.v. were computed for each response quantity of interest. This procedure 

is based on the fact that the SEED numbers used for the probabilistic simulations of the random variations 

are the same in the two separate probabilistic SSI analyses. 

 

Table 1 shows the U variable for the wall shear strain responses in the top seven panels which indicated 

the largest story drift responses. It should be noted that some U variables have a trend to shift upward 

from the mean of 1.0 for some responses and also increase their variations for larger seismic hazard 

levels. These trends are the largest for the transverse Panel 25 that behaves highly nonlinear behavior for 

larger seismic hazard levels. These trends also indicate the deviation of the physics-based computed U 

variable from the assumed lognormal format for the U variable. 

 

Figure 21 shows the probabilistic 84% NEP story drift responses in all 40 wall panels (see Figure 15 for 

panel locations) for two seismic hazard levels, namely, the 0.10g and 1.25g. It should be noted that for the 

0.10g level, the structure behaves linear elastically, and the story drift distribution across different walls is 

much more uniform than for the 1.25g level for which some walls behave heavily nonlinear and a result 

of this, the story drift distribution is highly non-uniform, in pockets of damages in few walls.  

 

Table 1 Computed U Variable Statistics for Selected Wall Panel Story Drifts 
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Figure 21 Probabilistic 84% NEP Story Drifts in Wall Panels for 

0.10g (left) and 1.25g (right) Seismic Hazard Levels 

 

For the 1.25g level, the story drifts are the largest in the panels 17, 24 and 25 in the transverse direction, 

and panels 28 and 29 in the longitudinal direction. The Figure 21 results show that the use of nonlinear 

SSI analysis is very important to capture more realistically the dynamic behaviour the building structure 

for large seismic input levels. 

 

To compute the structural fragility curves for the concrete walls, the traditional lognormal format was 

applied. Based on the simulated probabilistic SSI responses and the probabilistic wall capacities, the 

conditional failure probabilities (fragility data points) were computed for all seven hazard levels using the 

lognormal reliability model. Then, a probability space transformation to normal space is applied to the 

computed probability data, and based on the linear regression in the normal space, the lognormal fragility 

curves were determined, as illustrated in Figure 22. The red colour corresponds to the composite fragility 

curve, while the blue colour corresponds to the mean fragility curve (no epistemic uncertainty included). 

 

Finally the total risks and the overall risks were computed based on the panel structural fragility curves 

and the seismic hazard curve both assumed to follow the lognormal distribution format, as shown in 

Figure 12. To compute the total risks and the overall risk, a Monte Carlo simulation with 100,000 random 

samples was employed. 

 

 
Figure 22 Fitted Lognormal Structural Fragility Curve vs. Computed Fragility Data for the Panel 17 Shear 

Failure Mode; Linear Regression in Normal Space (left) and Fitted Lognormal Fragility Curve (right) 
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Based on the probabilistic nonlinear SSI analysis simulations, the overall risks, Pf, were obtained for the 

following four scenarios:  

 

i) Multipoint estimate approach using seven seismic hazard levels with annual probability of     

3.2.e-4, 1.0e-4, 3.2e-5, 1.0e-5, 3.2e-6, 1.0e-6 and 3.2e-7 

ii) Multipoint estimate approach using three seismic hazard levels with annual probability of     

1.0e-4, 1.0e-5 and 1.0e-6,  

iii) Point estimate approach using a single seismic hazard level with annual probability of 1.0e-4 

iv) Point estimate approach using a single seismic hazard level with annual probability of 1.0e-5 

 

Table 2 Overall Risk Pf Estimates for Four Seismic Hazard Level Scenarios  

(Seven Levels, Three Levels and Two Single Levels) 

 

 
 

Table 2 provides a comparison of the seismic overall risks, Pf, computed for the seven most affected wall 

panels. The predicted risk Pf are shown for three confidence levels, namely, the mean estimate, the 90% 

confidence estimate and the 95% confidence estimate. 

 

The Table 2 results show large differences between the overall structural risks computed for the four 

seismic hazard scenarios. The multiple level/multipoint estimate approach provides significantly different 

risk predictions than the traditional one level/point estimate approach with SSI response scaling. Using 

1.e-5 probability level with nonlinear SSI analysis as review level is better than using the 1.-e4 probability 

level with linear SSI analysis. 

 

Further, the overall risks for the nuclear equipment systems were investigated based on the probabilistic 

SSI simulations performed for each seismic hazard level. The probabilistic seismic load for the equipment 
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systems is described by the probabilistic in-structure response spectra (ISRS) computed at the equipment 

system supports. The ISRS amplitude is assumed to have a lognormal probability distribution.  

 

Figure 23 shows the probabilistic mean and 84% NEP ISRS for two locations, on the 4th floor at node 9 

(higher elevation) and on the 2nd floor at node 576 (lower elevation).  

 

The equipment capacity is assumed to be a lognormal variable with the minimum capacity defined for the 

1% NEP that is taken equal to the 84% NEP ISRS for the 1.e-4 seismic hazard level of 0.25g that is 

assumed to be design-basis level. 

 

 
 

Figure 23 Probabilistic Mean and 84% NEP ISRS at Node 9 (4th Floor) and Node 576 (2nd Floor) 

Computed for Five Seismic Hazard Levels (not including the extremes 0.10g and 1.60g) 

 

Figure 23 includes a +/- 20% band for a 2 Hz resonant frequency equipment at the two ISRS locations. 

The +/-20% frequency band is due to the equipment resonant frequency uncertainty. It should be noted 

that for the Node 9 ISRS the maximum spectral amplitude in the 2 Hz +/- 20% frequency band is not a 

monotonic function of the maximum ground acceleration due to the nonlinear structure behaviour for 

large seismic motions. 

 

Figure 24 shows the fitted lognormal and the probability data-point fragility curves for the 2 Hz frequency 

equipment at the two locations, Node 9 and Node 576. It should be noted that the lognormal fragility 

curves deviates significantly from the probability data points computed for each seismic hazard level. As 

shown in Figure 24 upper plots, the Node 9 2Hz equipment fragility curve should have a non-monotonic 

variation with ground acceleration that is beyond the modelling capability of the lognormal fragility 

format that assumes that fragility curves are always monotonic functions of the ground acceleration. The 

large bias of the lognormal fragility curve from the zero-bias probability data point fragility curve is also 

visible for the 2 Hz equipment fragility curve at Node 576. 
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Figure 24 Fitted Lognormal (left) and Data-Point (right) Fragility Curves for 2Hz Frequency Equipment  

 

Table 3 compares the overall predicted risks of the 2 Hz frequency equipment computed using the 

probability data-point fitted fragility curve versus the lognormal fitted fragility curve for few selected 

locations. The overall risks predicted by the traditional lognormal fragility curves are about 2-3 times 

smaller than the risks predicted by the zero-bias probability data-point fragility curves.  

 

The Node 9 equipment risks are not included in Table 3 since the deviation of the fitted lognormal 

fragility curve from the computed probability data points is unacceptable large, as shown in Figure 23 

upper plots. 

 

Table 3 Overall Risks Computed for the Fitted Point-Data Curve vs. Fitted Lognormal Curve 

 

 
 

Based on the above results it appears that the traditional lognormal model for fragility curves is too crude 

or even inappropriate on a case-by-case basis. The breaking down of the traditional lognormal format is 

closely related to the highly nonlinear structure behaviour that produces a significant redistribution of the 

stiffness or stress/strain in the structure that affects both the structure and the equipment fragilities.  
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The nonlinear structure behaviour for large seismic inputs impacts most severely on on the ISRS shapes 

and amplitudes producing non-monotonic fragility curves for various frequency bands of potential 

interest. This could make the traditional lognormal format fragility model impractical is some situations 

as shown in Figure 23. For such situations different fragility curve models are more appropriate to be used 

in future.  

 

The new ASCE 4-16 standard provides a robust physics-based probabilistic modelling for computing SSI 

response variations and fragility data that is a significant improvement over the simplistic traditional 

lognormal fragility model that is also based a lot on the “experts” subjectivity and uncapable to deal 

correctly with the real highly nonlinear structural behaviour for large seismic motions. 

 

ASCE 4-16 Standard-Based Probabilistic SSI Analysis vs. EPRI-Based Deterministic SSI Analysis 

 

Herein is a comparison between the probabilistic SSI analysis results using the new ASCE 4-16 standard-

based methodology and the traditional EPRI-based methodology as applied in a number of seismic 

fragility analyses performed in US. The comparative analyses are performed for a single review level of 

1.0g maximum ground acceleration that corresponds to the 1.e-5 annual occurrence probability GRS. 

 

The investigated nuclear building is the same building shown in Figure 15. The nonlinear structure 

behaviour is based on the same modelling including the same BBCs and the Cheng-Mertz hysteretic 

model. However, the site-specific condition is quite different since it corresponds to a deep soft soil 

deposit.  

 

Figure 25 shows the 60 probabilistic simulations of the horizontal and vertical GRS inputs at the ground 

surface based on the ASCE 4-16 Section 5.5 Method 2 that considers explicitly the spectral shape random 

variations. The GRS probabilistic model (ProEQUAKE module) was based a complete probabilistic site 

response analysis with the 1.e-5 UHRS input defined at the bedrock (Vs > 9,200 fps). Nonlinear 

hysteretic soil behaviour was included. The target and the simulated statistical GRS curves show a good 

matching. 

 

 
 

Figure 25 Simulated Probabilistic GRS Inputs for Horizontal and Vertical Directions 

 

Figure 26 shows the 60 probabilistic simulations of the Vs soil profiles (black line) at the low shear strain 

level (ProSITE module).  The target statistical Vs soil profiles (green) and the simulated statistical Vs 

profiles show a good matching. The 60 low-strain soil profile simulations were used for performing the 
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nonlinear site response analysis using the SHAKE methodology (SOIL module). The probabilistic soil 

material curves were simulated (ProSOIL module).  

 

 
 

Figure 26 Simulated Probabilistic Vs Soil Profiles (shown down to the 500 ft depth) 

 

The three deterministic soil profiles used in EPRI methodology, the lower-bound (LB) soil, the best-

estimate (BE) soil, and the upper-bound (UB) soil were determined from the 60 simulated soil profiles 

which were computed for the effective shear strain in soil layers based on nonlinear. The LB, BE and UB 

soils corresponded to the 16% NEP, mean and 84% NEP statistical soil property values.  

 

In the EPRI-based methodology, the “probabilistic” SSI analysis is performed for only five deterministic 

SSI analysis cases based on a center-composite experimental design scheme including 1) Best-estimate 

Structure and Best-estimate Soil (BEStr-BESoi), 2) Best-estimate Structure and Lower-bound Soil 

(BEStr-LBSoi), 3) Best-estimate Structure and Upper-bound Soil (BEStr-UBSoi), 4) Lower-bound 

Structure and Best-estimate (LBStr-BESoi), and 5) Upper-bound Structure and Best-estimate Soil 

(UBStr-BESoi). 

 

The mean GRS or the GMRS input is considered for the seismic input in the EPRI-based methodology. 

For each SSI analysis case out of the five cases, the seismic input variability was considered by five sets 

of spectrum compatible acceleration histories based on “seed” records selected for similar sites.  

 

The maximum SSI responses are computed for fifteen Soil variation cases (5 sets of acceleration inputs 

for each of the 3 soil variation cases, LB, BE and UB soils) and fifteen Structure variation cases (5 sets of 

acceleration inputs for each of the 3 structure stiffness variation cases). The structure stiffness variation 

cases include a linear elastic structure assumed to be fully cracked concrete everywhere that implies a 

50% reduction of the uncracked stiffness with a coefficient of variation of 33%, i.e. the LB, BE and UB 

stiffness variations correspond to the cracked concrete stiffness times 0.67, (median) cracked stiffness, 

and cracked stiffness times 1.33.  Concrete material damping was assumed to be 7% for all SSI analysis 

cases. In the EPRI methodology, the SSI response median and variations are computed considering all the 

seismic inputs, soil and structure variability cases. The total variation is computed based on the statistical 

variations computed separately for the seismic, soil and structure stiffness variations. 

 

Figure 27 upper plot shows the computed statistical story drifts, namely, the probabilistic mean and 84% 

NEP values, using the ASCE 4-16 standard-based 60 probabilistic SSI simulations and the EPRI-based   

25 deterministic simulation cases (5 cases are common), for the most affected shearwall panels in the 

structure. It should be noted that the ASCE 4-based probabilistic SSI vs. EPRI-based deterministic SSI 
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results are quite similar for some walls, as Panels 17, 19, 24 and 25, and quite different for other walls, as 

Panels 28 and 29, for which the EPRI results show very low SSI responses. The ASCE 4 based 

probabilistic simulation results shows that the critical wall panels are the Panels 28, 29, 15 and 16, while 

the EPRI based deterministic simulation results shows that the critical wall panels are the Panels 17, 24 

and 25. These shown differences and trends are mainly due to the nonlinear behavior of the structure that 

produces much larger seismic response variations for the probabilistic simulations. 

 

Figure 27 lower plot shows selected probabilistic wall hysteretic loop simulations (no. 10, 20, 30, 40, 50 

and 60) for the transverse Panel 17 and the longitudinal Panel 28 near the building corner (see Figure 15 

for the panel locations). It should be noted that the probabilistically simulated hysteretic responses are 

very different for the Panels 17 and 28 with different locations and orientations. The story drift variations 

are much more reduced for the Panel 17 than Panel 28. The Panel 28 story drift responses are highly 

scattered being dominated by two probabilistic simulations (no. 10 and 50) for which the SSI responses 

are few times larger than for the other simulations.  

 

 
Figure 27 Predicted Statistical Shear Strain (upper plot) and Hysteretic Loops (lower plot) in Wall Panels 

 

Figure 28 shows that the effects of the nonlinear structure behaviour are very significant for the severe 

seismic input of 1.0g ground acceleration. The nonlinear structure behaviour was included only in the 

ASCE 4-based probabilistic methodology, but not in the EPRI-based simplified methodology based on 

very limited deterministic SSI simulation cases.  



 

24th Conference on Structural Mechanics in Reactor Technology 

BEXCO, Busan, Korea - August 20-25, 2017 

Division V 

21 

 

 
Figure 28 Effect of Nonlinear Behavior; EPRI Linear SSI (left) and ASCE 4 Nonlinear SSI (right) 

 

Figures 29 and 30 show the computed ASCE 4-based probabilistic ISRS (60 simulations, mean and 84% 

NEP values) and EPRI-based deterministic ISRS (mean of 5 input sets for the 5 SSI analysis cases). 

 

 
Figure 29 Comparative ASCE 4 Probabilistic (left) vs. EPRI Deterministic (right) ISRS at  

Node 482 (Basemat) in X-Direction  

 
Figure 30 Comparative ASCE 4 Probabilistic (left) vs. EPRI Deterministic (right) ISRS at  

Node 482 (Basemat) in Y-Direction  
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The Figure 29 and 30 ISRS results for Node 482 at the basemat level indicate a significantly larger 

response variation for the ASCE 4 probabilistic SSI simulations than the EPRI deterministic SSI 

simulations. The implication of these different ISRS simulation results on the equipment risks or 

fragilities is shown in Table 4. The ASCE 4 based ISRS results produce 2 Hz frequency equipment risks 

that are up to two orders of magnitude larger than the EPRI based ISRS results for both X and Y 

directions.  

 

The same conclusion is valid for the 8 Hz equipment risks at same Node 482 location, or for other 

locations as indicated by the computed risk results shown in Table 4. It should be noted that occasionally, 

the EPRI methodology provides conservative, or overly conservative risk results, as shown for the 2 Hz 

equipment fragility at Node 9 location in Y direction. 

 

Table 4 Computed 2 Hz and 8 Hz Equipment Risks in X and Y Directions for Different ISRS Locations 

 

 
 

The above results show that the SSI structural behaviour is very different for the ASCE 4 probabilistic 

nonlinear SSI simulations (nonlinear structure model) and the EPRI deterministic linear SSI simulations 

(linear cracked structure model with a 0.5 mean/median stiffness reduction and 7% damping).  

 

The ASCE 4 probabilistic SSI modelling including the nonlinear structure behaviour captures well the 

physical-behaviour of the concrete structure.  The ASCE 4 probabilistic-based fragility results are quite 

different than the EPRI deterministic-based fragility results. Differences in the predicted risks/fragilities 

could be up to two-three orders of magnitude.  

 

CONCLUSIONS 

 

The paper illustrates the application of the probabilistic seismic SSI analysis to the nuclear structures 

based on the new ASCE 04-16 standard recommendations applicable to both the design-basis level (DBE) 

applications and the beyond design-basis level (BDBE) applications including fragility analyses.  

 

For the DBE applications, significant differences were noted between the probabilistic SSI and 

deterministic SSI responses for the deeply embedded SMR structure. There is a need for having a larger 

number of rigorous comparative probabilistic-deterministic investigations based on the ASCE 4-16 
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standard recommendations for both shallow and deeply embedded structures modeled using detailed FE 

models with elastic foundations (not just sticks with rigid basemats). 

 

The ASCE 4 probabilistic SSI modelling including the nonlinear structure behaviour captures well the 

physical-behaviour of the concrete structures for the BDBE applications.  The new ASCE 4-16 standard 

provides a robust physics-based probabilistic modelling for computing the SSI response variations as a 

basis for predicting the seismic fragilities of the SSCs for the new design nuclear plants. The ASCE 4-16 

standard probabilistic-based SSI methodology provides a major improvement over the more simplistic 

traditional EPRI deterministic-based SSI methodology that was applied over the last three decades for 

performing fragility analyses for the existing nuclear plants in operation. 
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