Engineering Overview of ACS SASSI NQA V4.3 Application to Seismic SSI Analysis of Safety-Related NPP Buildings

Ghiocel Predictive Technologies Inc.

Dr. Dan M. Ghiocel

Member of ASCE 4 & 43 Standards Email: <u>dan.ghiocel@ghiocel-tech.com</u> Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com

Part 5: Description of Advanced Options PRO and UPLIFT GP Technologies, Inc., Rochester, New York

October 2021

Day 3B Presentation Content:

- 1. Option PRO: Probabilistic Site Response and SSI Analysis (per ASCE 4-16)
- 2. Option UPLIFT: Nonlinear Foundation Uplift SSI Analysis (per JEAC 4601-2015)

1. Option PRO: Probabilistic Site Response and SSI Analysis (per ASCE 4-16)

ASCE 4-16 Sect. 2 and 5.5 on PSRA and PSSIA

-The recent ASCE 4-16 standard provides an unique set of engineering guidance for modeling SSI uncertainties using physics-based probabilistic SSI models.

- Probabilistic SSI analysis is a superior engineering approach, if correctly implemented by the analyst. PSSIA represents the future. The ASCE 4-16 based probabilistic SSI analysis provides a solid physics-based modeling basis for improving the designbasis SSI analysis and the fragility calculations in next future.

- Need of additional research projects and publications so that designers see differences between probabilistic and deterministic SSI results. Dual applications with both DSSIA and PSSIA useful.

ASCE 4-16 Probabilistic SSI Analysis (PSSIA)

Based on the new ASCE 04-2016 recommendations:

- Probabilistic SSI analyses should be performed using at least 30 LHS randomized simulations.

- For the *design-level applications*, *probabilistic SSI responses* should defined for the 80% non-exceedance probability (NEP).

- Probabilistic modeling should minimally include:
- SEISMIC INPUT: GMRS/UHRS amplitude assumed to randomly varying (Methods 1 and 2).
 - SOIL PROFILE: Vs and D soil profiles
 - STRUCTURE: Effective stiffness and damping, as functions

of stress/strain level in different parts of structure.

ASCE 4-16 /ACS SASSI Option PRO Probabilistic SSI Simulation Approach

PSRA and PSSIA Computational Steps 1) **PREPARE SSI INPUTS:** Using ACS SASSI PRO modules, generate the input simulations (*ProEQUAKE, ProSITE, ProSOIL and ProHOUSE, ProNON, ProMOTION, ProSTRESS*)

2) **PERFORM SSI ANALYSIS:** Using the *ACS SASSI modules,* run in batch the ensembles of the simulated input files to compute the SSI responses (SITE, SITE, SOIL, HOUSE, ANALYS, MOTION, RELDISP, NONLINEAR, STRESS).

3) **POST-PROCESS SSI RESPONSES:** Using the ACS SASS/ PRO modules, post-process statistically the ensembles of the simulated SSI responses (*ProSRSS, ProRESPONSE*)

REMARK: The SSI input mean values which are deterministic quantities defined in the baseline files that are generated with the ACS SASSI UI commands, similar to deterministic SSI input values.

Option PRO Modules for PSRA and PSSIA

Check_Site_Output.exe	Application	10,378 KB
ProEquake.exe	Application	1,970 KB
PROHOUSE.exe	Application	9,270 KB
ProMotion.exe	Application	695 KB
ProNon.exe	Application	80 KB
ProResponse.exe	Application	178 KB
ProSite.exe	Application	9,651 KB
ProSoil.exe	Application	9,079 KB
ProSRSS.exe	Application	722 KB
ProStress.exe	Application	37 KB
SITEPRO.exe	Application	640 KB
Write_Site_Input.exe	Application	25 KB

Probabilistic SSI Analysis Simulations Using N LHS Samples

Probabilistic Simulation Using PRO Modules

DET/ INPUT MEAN VALUES Baseline Input Files (UI) (BASELINE.ModuleExt)

Generated with ACS SASSI UI Commands, similar to a deterministic SRA/SSI models.

Using ACS SASSI main software.

PRO/ INPUT STATISTICS GProModule Input Files (Text) (GModuleExt.In)

> Generated with PRO Modules for user input text files.

Using ACS SASSI option PRO software.

PRO MODULE INPUT SIMULATIONS Simulated Input Files for ACS SASSI runs (GModuleNameXXX.ModuleExt)

ProEQUAKE Module

The ProEQUAKE module simulates the LHS random samples for the probabilistic input GRS (the .rsi extension files) and, then, generates the spectrum-compatible input acceleration histories (the .acc extension files) to be used as inputs for probabilistic simulations. The response spectrum shape can be modeled as either a lognormal random variable or a lognormal random field. Both methods, Method 1 and Method 2 of the ASCE 4-2016 standard Section 5.5 are implemented in Option PRO.

ProEQUAKE uses a similar algorithm with EQUAKE for the simulation of the random spectrum-compatible input acceleration histories. The simulated acceleration histories are automatically baseline corrected. For each simulated acceleration the user can also get the ground velocity and displacement histories (the .vel and .dis extension files), the power spectral density (PSD) function (the .psd extension files) and the Fourier amplitude (the .fft extension files). For details see user manuals for EQUAKE. 12

ProSITE Module

The ProSITE module (Model 1 and Model 2) simulates the LHS random samples for the SITE module input (the .sit extension files). The ProSITE module generates the simulated low-strain soil Vs and D profiles. The Vs and D could be defined as statistical dependent random quantities. The Vs spatial correlation with depth can be included.

The soil profiles can be defined using two Gaussian continuous stochastic process models: i) Model 1, normal or lognormal random curves/fields, or ii) Model 2, mixture of long wavelength random curves/fields and short wavelength lognormal random curves/fields. Lognormal soil profiles can be obtained per user's option by an inverse probability transformation (for translation non-Gaussian processes). This is implemented to be made automatically at no effort for the users.

The Vs soil profiles can be also simulated using a non-homogeneous Poisson discrete stochastic process model (Toro, 1995). For iterated soil profiles the .sit files generated by ProSITE and the FILE88 produced by SOIL runs are used as inputs for the SITE runs. 13

ProSOIL Module

The ProSOIL module is required for nonlinear probabilistic site response analysis. The ProSOIL module simulates the LHS random samples for the SOIL module input (the .soi files). The simulated soil shear modulus G and damping D curves are considered functions of the soil shear strain in each soil layer.

The Vs and D profiles are defined as statistical dependent random quantities. For nonlinear site response analysis the .soi files generated by ProSOIL will be used as inputs for the SOIL runs.

After each SOIL run, for PSSIA, the SITE module should be run with the "Nonlinear" option, so that the iterated soil properties from SOIL run written in FILE88 will be used by SITE and eventually by HOUSE for the embedded SSI models.

PSRA Batch Run Steps (See Examples)

Prepare PSRA Inputs Steps:

Run ProEQUAKE Module to get input acceleration time histories ACCxxx.acc Run ProSITE to get GSITExxx.sit Run ProSOIL Module to get the nonlinear soil curve samples GSOILxxx.soi

Sample SRA Analysis Steps:

Run SOIL Module (3 Runs for X, Y and Z)

PSRA Batch Example – ProEQUAKE and ProSITE

```
rem This batch is to do probabilistic site response analysis for a soil site.
   rem No soil nonlinear behavior is included. The UHRS input is defined at bedrock.
 2
    SET exe path="C:/ACSV300/PRO/"
 3
    rem Part 1: Generate the probabilistic simulated inputs
 4
 5
    rem ProEOUAKE: Get the time histories for ProMOTION and ProSOIL
 6
7
    cd .\ProEquake\xdir
 8
        %exe path%Proequake.exe < GEQU-SOIL.IN</pre>
 9
    cd ..\ydir
        %exe path%Proequake.exe < GEQU-SOIL.IN</pre>
10
11
    cd ..\zdir
12
        %exe path%Proequake.exe < GEQU-SOIL.IN</pre>
13
    cd ...
14
    cd ...
15
                                                       ProEQUAKE and ProSITE are
16 rem ProSITE:
17
   cd .\ProSite
                                                       used to simulate probabilistic
18
        %exe path%Prosite.exe < gsite.in</pre>
                                                       free-field accelerations and
19
    cd ...
                                                       soil profiles - samples
21
    rem ProSOIL: Soil
22
    for %%j in (X Y Z) do (
23
        mkdir .\ProSoil\%%jdir\MEAN
24
        mkdir .\ProSoil\%%jdir\SampleD
        mkdir .\ProSoil\%%jdir\GumbelD
25
26
        mkdir .\ProSoil\%%jdir\LognormalD
27
28
        copy .\ProEquake\%%jdir\ACC*.ACC .\ProSoil\%%jdir\ACC*.ACC
29
        copy .\ProSite\GSITE*.SIT .\ProSoil\%%jdir\GSITE*.SIT
30
        copy .\inputs\SOIL.INP .\ProSoil\%%jdir\SOIL.INP
31
        copy .\inputs\EQUAKE.INP .\ProSoil\%%jdir\EQUAKE.INP
32
        copy .\inputs\Spectru.RS .\ProSoil\%%jdir\Spectru.RS
        copy .\inputs\EQUAKE.EQU .\ProSoil\%%jdir\PSRA.EQU
33
34
        copy .\inputs\samples cases.txt .\ProSoil\%%jdir\Samples cases.txt
35
        copy .\ProResponse\RS*.IN .\ProSoil\%%jdir\*.IN
36
```

PSRA Batch Example – Use SOIL and EQUAKE

37	cd	.\ProSoil\ <mark>%%jdir</mark>
38		copy\BASELINE.soi BASELINE.soi
39		<pre>%exe_path%Prosoil.exe < gsoil.in</pre>
40		FOR /F %%i IN (.\Samples_cases.txt) DO (
41		copy GSOIL <mark>%%i</mark> .soi PSRA.soi
42		rem Run SOIL to compute free-field accelerations
43		C:\ACSV300\EXEB\SOILB.exe < soil.inp
44		copy PSRA.osoi gsoil <mark>%%i</mark> .osoi
45		copy FILE88 FILE88- <mark>%%i</mark>
46		copy ACC*.TH ACCO*.TH%%i
47		
48		rem layer 1 acceleration. compute ARS using EQUAKE
49		copy ACC001.TH input-acc.acc
50		C:\ACSV300\EXEB\EQUAKEB.exe < equake.inp
51		copy input-acc.rso rso-l1.r <mark>%%i</mark>
52		rem layer 7 acceleration. compute ARS using EQUAKE
53		copy ACC007.TH input-acc.acc
54		C:\ACSV300\EXEB\EQUAKEB.exe < equake.inp
55		copy input-acc.rso rso-17.r <mark>%%i</mark>
56		rem layer 14 acceleration. compute ARS using EQUAKE
57		copy ACC014.TH input-acc.acc
58		C:\ACSV300\EXEB\EQUAKEB.exe < equake.inp
59		copy input-acc.rso rso-114.r%%i
60		SOIL and EQUAKE are used to
		compute simulated site
		compute simulated site
		response accelerations and

ARS

PSRA Batch Example – Use ProRESPONSE

```
61
            rem Compute probabilistic ARS using ProRESPONSE
62
            %exe path%ProRESPONSE.exe < RS-MEAN.in</pre>
63
            copy *MEAN.RS .\MEAN\*MEAN.RS
64
            copy *.out .\MEAN\*.out
65
            del *MEAN.RS *.out
66
            %exe path%ProRESPONSE.exe < RS-SampleD.in</pre>
67
            copy *P*.RS .\SampleD\*P*.RS
68
            copy *.out .\SampleD\*.out
69
            del *P*.RS *.out
70
            %exe path%ProRESPONSE.exe < RS-GumbelD.in</pre>
71
            copy *P*.RS .\GumbelD\*P*.RS
72
            copy *.out .\GumbelD\*.out
73
            del *P*.RS *.out
74
            %exe path%ProRESPONSE.exe < RS-LognormalD.in</pre>
75
            copy *P*.RS .\LognormalD\*P*.RS
76
            copy *.out .\LognormalD\*.out
77
            del *P*.RS *.out
78
        cd ..
79
        cd ...
                                           ProRESPONSE is used to
80 )
                                           compute probabilistic site
                                           response ARSC
```

ProHOUSE Module

The ProHOUSE module (Option 1 for Structure and Option 2 for 2D Soil Models) simulates the LHS random samples for the HOUSE module input file (the .hou files).

The ProHOUSE Option 1 assumes that the structural effective stiffness (normalized to elastic stiffness) and damping are two statistically dependent random variables for each material selected by the user. The effective stiffness and damping values are different for different parts of the structure that have different shear deformation levels.

The ProHOUSE Option 2 simulates the iterated Vs and D for 2D layered soil models using 2D/2V stochastic field models.

PSSIA Batch Run Steps (See Examples)

PSRA and PSSIA Inputs Steps:

Run ProEQUAKE Module to get input acceleration time histories ACCxxx.acc Run ProSITE to get GSITExxx.sit

Run SITE Module to get the free-field simulation

Run Check_SITE_output Module to check if all the SITE module convergence.

NOTE: If some of the SITE samples are not convergent, then, the file "samples_cases.txt" will provide the list of the nonconverged samples. Otherwise, this file does not exist. Module Write_SITE_Input will write the final convergent SITE simulated input files.

Run ProSOIL Module to get the nonlinear soil curve samples GSOILxxx.soi Run SOIL Module to get the in-column input acceleration histories ACCxxx.th Run ProMOTION Module to get MOTION inputs GMOTIONxxx.mot Run ProSTRESS Module to get MOTION inputs GSTRESSxxx.str Run ProHOUSE Module to get House inputs HOUSExxx.hou

Sample SSI Analysis Steps:

Run SITE Module (3 Runs for X, Y and Z) Run POINT Module (1 Run) Run HOUSE Module (1 Run) Run ANALYS Module (1 Run for X, Y and Z Run MOTION Module (3 Runs for X, Y and Z) Run STRESS Module (3 Runs for X, Y and Z)

Run ProSRSS Module (1 Run for X, Y and Z)

PSSIA Response Post-Processing Steps:

Run ProRESPONSE Module to compute mean TFU and TFI, and/or probabilistic level RS and STRESS responses:

- User options for computing mean or probability level responses.
- User options for computing probabilistic responses using: Sample distribution, Lognormal distribution or Gumbel distribution.

PSSIA Batch Run – Use ProEQUAKE

```
rem This batch is to do probabilistic SSI analysis of RB stick for a soil site
   SET exe path="C:/ACSV300/PRO/"
   rem Part 1: Generate the probabilistic simulated inputs
3
   rem ProEquake: get the time histories for promotion and prosoil
4
5
6
   cd .\ProEquake\xdir
7
       %exe path%Proequake.exe < GEQU-SOIL.IN</pre>
8
   cd ..\ydir
                                                          ProEQUAKE is used to generate
9
       %exe path%Proequake.exe < GEQU-SOIL.IN</pre>
   cd ..\zdir
                                                          probabilistic spectra and
       %exe path%Proequake.exe < GEQU-SOIL.IN</pre>
1
12
   cd ...
                                                          acceleration inputs
L3
   cd ...
4
15
  rem ProMotion: generate *.mot files
6
   for %%k in (coh) do (
17
       for %%j in (X Y Z) do (
           mkdir .\ProMotion\%%k\%%jDIR
19
           copy .\ProEquake\%%jdir\ACC*.ACC .\ProMotion\%%k\%%jDIR\ACC*.ACC
           copy .\ProMotion\GMOT.IN .\ProMotion\%%k\%%jDIR\GMOT.IN
21
           copy .\ProMotion\%%k\BASELINE.mot .\ProMotion\%%k\%%jDIR\BASELINE.mot
22
23
           cd .\ProMotion\%%k\%%jDIR
24
               %exe path%ProMotion.exe < GMOT.IN</pre>
25
           cd ...
                                                         ProMOTION and ProSTRESS used to
26
           cd ...
27
           cd ...
                                                         generate probabilistic seismic inputs for
29
                                                         MOTION and STRESS
   rem ProStress: generate *.str files
31
   for %%k in (coh) do
       for %%j in (X Y Z) do (
           mkdir .\ProStress\%%k\%%jDIR
33
34
           copy .\ProEquake\%%jdir\ACC*.ACC .\ProStress\%%k\%%jDIR\ACC*.ACC
35
           copy .\ProStress\GSTRESS.IN .\ProStress\%%k\%%jDIR\GSTRESS.IN
           copy .\ProStress\%%k\BASELINE.str .\ProStress\%%k\%jDIR\BASELINE.str
36
37
           cd .\ProStress\%%k\%%jDIR
               %exe path%ProStress.exe < gstress.in</pre>
39
           cd ...
10
           cd ...
11
           cd ...
12
                                                                                                             21
    2021 Copyright of Ghiocel Predictive Lechnologies, Inc., All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes
```

PSSIA Batch Run – ProHOUSE and ProSITE

```
44
        rem ProHouse: generate *.hou files
45
        cd .\ProHouse\coh
            %exe path%prohouse.exe < ghou.in</pre>
46
47
        cd ...
        cd ...
48
49
50
51
        rem ProSite: generate *.sit files
52
        copy .\inputs\SITE.INP .\ProSite\SITE.INP
53
        cd .\ProSite
54
            copy gsite.in wgsite.in
55
            %exe path%prosite.exe < gsite.in</pre>
56
        cd ..
57
        call check linear site.bat
58
        cd .\ProSite
59
            %exe path%Write Site Input.exe < wgsite.in</pre>
60
        cd ...
61
62
        rem part 2: Run Site, Point, House, analysis: Soil
63
        mkdir Work
        mkdir outputs\coh\XDIR
64
        mkdir outputs\coh\YDIR
65
        mkdir outputs\coh\ZDIR
66
67
        copy .\inputs\SITE.INP .\Work\SITE.INP
68
69
        copy .\inputs\POINT.INP .\Work\POINT.INP
        copy .\inputs\HOUSE.INP .\Work\HOUSE.INP
70
71
        copy .\inputs\ANALYSIS.INP .\Work\ANALYSIS.INP
        copy .\inputs\MOTION.INP .\Work\MOTION.INP
72
73
        copy .\inputs\STRESS.INP .\Work\STRESS.INP
        copy .\ProHouse\coh\samples cases.txt .\Work\samples cases.txt
74
75
76
        cd .\Work
77
        FOR /F %%i IN (.\samples cases.txt) DO (
79
            rem site: XDIR
            copy ... \ProSite \GSITE \%i - X.sit pssia.sit
            %exe path%SITEPro.exe < site.inp</pre>
81
82
            copy FILE1 FILE1X
83
            copy pssia.osit .. \outputs\site %%iX.out
```

84

ProHOUSE is used to simulate structure stiffness and damping

5

ProSITE used to simulate Vs and D soil profiles. Convergence is checked by Check_Linear_Site.bat

```
SET exe path="C:/ACSV300/PRO/"
 2
    cd .\PROSite
 3
      FOR /F %%i IN (.\samples cases.txt) DO (
        rem site
 6
        copy GSITE %%i.sit pssia.sit
 7
        %exe path%SITEPro.exe < site.inp</pre>
8
        copy pssia.osit gsite %%i.osit
9
10
11
      :start
12
      %exe path%check site output.exe < gsite.in</pre>
13
      if exist samples cases.txt (
14
        goto CONTINUE
15
      ) else (
16
        goto END
17
18
19
      : CONTINUE
20
      FOR /F %%i IN (.\samples cases.txt) DO (
21
        rem site
22
        copy gsite%%i.sit pssia.sit
23
        %exe path%SITEPro.exe < site.inp</pre>
24
        copy pssia.osit gsite %%i.osit
25
26
        del samples cases.txt
27
        goto start
28
      : END
29
30 cd ...
```

PSSIA Batch Run – SSI Simulation Runs

85	rem site: YDIR	
86	<pre>copy\ProSite\GSITE%%i-Y.sit pssia.sit</pre>	
87	<pre>%exe path%SITEPro.exe < site.inp</pre>	
88	copy FILE1 FILE1Y	
89	copy pssia.osit\outputs\site%%iY.out	
90		
91	rem site: ZDIR	
92	copy \ProSite\GSITE <mark>%%i</mark> -Z.sit pssia.sit	
93	<pre>%exe path%SITEPro.exe < site.inp</pre>	
94	COPY FILE1 FILE1Z	
95	copy pssia.osit\outputs\site%%iZ.out	
96		
97	rem point	ACS SASSI
98	copy/inputs/rb.poi pssia.poi	
99	C:\ACSV300\EXEB\point3b.exe < point.inp	modules used for
100	copy pssia.opoi \outputs \point %%i.out	
101		SSI batch runs for
102	rem house	
103	copy \ProHouse\coh\house <mark>%%i</mark> .hou pssia.hou	all simulations;
104	C:\ACSV300\EXEB\houseFSb.exe < house.inp	SITE DOINT
105	copy pssia.ohou\outputs\coh\house <mark>%%i</mark> .out	SITE, POINT,
106		
107	rem analysis	HUUSE, ANALIS,
108	copy \inputs\rb-%%k.anl pssia.anl	ΜΟΤΙΟΝ
109	C:\ACSV300\EXEB\analysFSb.exe < analysis.inp	
110	copy pssia.oanl\outputs\%%k\analysis%%i.out	
111	copy FILE8X \outputs \%%k \XDIR \FILE8 %%i	
112	copy FILE8Y \outputs \%%k \YDIR \FILE8 %%i	
113	copy FILE8Z \outputs \%%k \ZDIR \FILE8 %%i	
114		
115	rem run motion and stress	
116	for <code>%%j in (X Y Z) do (</code>	
117	<pre>copy\ProMotion\%%k\%%jdir\gmotion%%i.mot p</pre>	ssia.mot
118	copy FILE8 <mark>%%j</mark> FILE8	
119	C:\ACSV300\exeb\motionb.exe < motion.inp	
120	<pre>copy *.tfi\outputs\%%k\%%jDIR*.i%%i</pre>	
121	<pre>copy *.tfu\outputs\%%k\%%jDIR*.u%%i</pre>	
122	<pre>copy *.RS\outputs\%%k\%%jDIR*.r%%i</pre>	
123	<pre>copy pssia.omot\outputs\%%k\%%jDIR\motion%</pre>	8i.out

PSSIA Batch Run – SSI Simulation Runs

124		
125	<pre>copy\ProStress\%%k\%%jdir\gstress%%i.s</pre>	tr pssia.str
126	C:\ACSV300\exeb\stressb.exe < stress.inp	
127	copy pssia.ostr\outputs\%%k\%%jDIR\str	ess.o <mark>%%i</mark>
128		
129	del *.tf* *.RS FILE8	
130)	
131	del FILE8X FILE8Y FILE8Z FILE77 FILE78 FILE79	
132)	
133	del FILE1* COO* *.o* *.ACC *.s* *.hou	
134)	
135)	
136	cd	ACS SASSI
137		modulos usod for
138	call compute srss response.bat	modules used for
139		SSI batch runs for
140		
141	pause	all simulations;
		STRESS
		JINLUU

PRO Post-Processing – ProSRSS & ProRESPONSE

1	SET	exe_pacha C./ACSVS00/PRO/		
2				
3	rem	run ProResponse		
4	for	88k in (coh) do (
5		mkdir .\outputs\ <mark>%%k</mark> \SRSS\RS		
6		mkdir .\outputs\ <mark>%%k</mark> \SRSS\STRESS		
7				
8		mkdir .\outputs\ <mark>%%k</mark> \SRSS\RS\MEAN		
9		mkdir .\outputs\ <mark>%%k</mark> \SRSS\RS\SampleD		
10		mkdir .\outputs\ <mark>%%k</mark> \SRSS\RS\GumbelD		
11		mkdir .\outputs\ <mark>%%k</mark> \SRSS\RS\LognormalD		
12				
13		mkdir .\outputs\ <mark>%%k</mark> \SRSS\STRESS\MEAN		
14		<pre>mkdir .\outputs\%%k\SRSS\STRESS\SampleD</pre>		
15		mkdir .\outputs\ <mark>%%k</mark> \SRSS\STRESS\GumbelD		
16		mkdir .\outputs\ <mark>%%k</mark> \SRSS\STRESS\LognormalD		
17				
18		REM compute SRSS		
19		<pre>copy .\ProSRSS*.IN .\outputs\%%k*.IN</pre>	ProSRSS used for	
20		<pre>copy .\ProSRSS*.str .\outputs\%%k*.str</pre>		
21		cd .\outputs\%%k	combining the	
22		<pre>%exe_path%ProSRSS.exe < SRSS-RS.in</pre>	oomoning mo	
23		copy ProSRSS.out .\\SRSS\RS\ProSRSS.out	maximum responses	
24		<pre>%exe_path%ProSRSS.exe < SRSS-STRESS.in</pre>	maximam reepeneee	
25	copy ProsRss.out .\\srss\stress\ProsRss.out for ARS and stresses			
26		cd		
27		cd		
28				
29		rem transfer function		
30		for %%j in (X Y Z) do (
31		<pre>copy .\ProResponse\%%jDIR\TF*.IN .\outputs\%%k\%%jDI</pre>	R/*.IN	
32		cd .\outputs\%%k\%%jDIR		
33		<pre>%exe_path%ProResponse.exe < TFU-MEAN.in</pre>		
34		copy ProResponse.out ProResponse-TFU.out	ProRESPONSE used	
35		<pre>%exe_path%ProResponse.exe < TFI-MEAN.in</pre>		
36		copy ProResponse.out ProResponse-TFI.out	for computing mean	
37		cd		
38		cd	ATE values (TEU TEI)	
39		cd		
40				
/				

Post-Processing – ProRESPONSE for ARS

```
43
        rem RS, STRESS
44
        copy .\ProResponse\RS*.IN .\outputs\%%k\SRSS\RS\*.IN
45
        copy .\ProResponse\STRESS*.IN .\outputs\%%k\SRSS\STRESS\*.IN
46
        cd .\outputs\%%k\SRSS\RS
47
48
            %exe path%ProResponse.exe < RS-MEAN.in</pre>
49
            copy *MEAN.RS .\MEAN\*MEAN.RS
                                                              ProRESPONSE used for
50
            copy ProResponse.out .\MEAN\ProResponse.out
51
            del *MEAN.RS ProResponse.out
                                                             computing mean and
52
                                                              probability-level
53
            %exe path%ProResponse.exe < RS-SampleD.in</pre>
54
            copy *P*.RS .\SampleD\*P*.RS
                                                             ARS using Sample CFD,
55
            copy ProResponse.out .\SampleD\ProResponse.out
56
            del *P*.RS ProResponse.out
                                                              Gumbel and Lognormal
57
                                                             distributions
58
            %exe path%ProResponse.exe < RS-GumbelD.in</pre>
59
            copy *P*.RS .\GumbelD\*P*.RS
            copy ProResponse.out .\GumbelD\ProResponse.out
60
61
            del *P*.RS ProResponse.out
62
63
            %exe path%ProResponse.exe < RS-LognormalD.in</pre>
            copy *P*.RS .\LognormalD\*P*.RS
64
65
            copy ProResponse.out .\LognormalD\ProResponse.out
            del *P*.RS ProResponse.out
66
67
68
        cd . .
```

Post-Processing – ProRESPONSE for STRESS

```
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
```

cd ...

69

```
cd .\STRESS
    %exe path%ProResponse.exe < STRESS-MEAN.in</pre>
    copy *MEAN.TXT .\MEAN\*MEAN.TXT
    copy ProResponse.out .\MEAN\ProResponse.out
    del *MEAN.TXT ProResponse.out
    %exe path%ProResponse.exe < STRESS-SampleD.in</pre>
    copy *P*.TXT .\SampleD\*P*.TXT
    copy ProResponse.out .\SampleD\ProResponse.out
    del *P*.TXT ProResponse.out
    %exe path%ProResponse.exe < STRESS-GumbelD.in</pre>
    CODV *P*.TXT .\GumbelD\*P*.TXT
    copy ProResponse.out .\GumbelD\ProResponse.out
    del *P*.TXT ProResponse.out
    %exe path%ProResponse.exe < STRESS-LognormalD.in</pre>
    copy *P*.TXT .\LognormalD\*P*.TXT
    copy ProResponse.out .\LognormalD\ProResponse.out
    del *P*.TXT ProResponse.out
cd ...
cd ...
cd . .
```

ProRESPONSE used for computing mean and probability-level element stress components using Sample CFD, Gumbel and Lognormal distributions

Option PRO Modules. Input Guidance and Examples

Probabilistic Seismic Input Models

ProEQUAKE for Probabilistic Seismic Input

Probabilistic GRS and Its Simulated GRS Samples using ASCE 4 Methods 1 (left) and Method 2 (right)

Example for ProEQUAKE Input Parameters

EXAMPLE 1: ROCK SITE - METHOD 2 WITH CONSTANT CORRELATION LENGTH

GRS Amplitude Correlation for Different Frequencies

Figure 11. Samples of 20 response spectra from magnitude 6.5 earthquakes with a source-to-site distance of 8 km. The simulated spectra use means and variances from Abrahamson and Silva (1997). (a) Simulated spectra using correlation coefficients equal to zero between all periods. (b) Simulated spectra using correlation coefficients equal to one between all periods. (c) Simulated spectra using correlation coefficients from equation (9). (d) Real spectra from recorded ground motions with magnitude ≈ 6.5 and distance ≈ 8 km.

Cases with Differing Periods but the Same Orientation

When the two periods of interest differ, more complex functional forms are needed. The correlation between the ε values of a single horizontal ground motion component at two differing periods is estimated by the function:

$$\rho_{\varepsilon_{x},\varepsilon_{x}} = 1 - \cos\left(\frac{\pi}{2} - \left(0.359 + 0.163I_{(T_{\min}<0.189)} \ln \frac{T_{\min}}{0.189}\right) \ln \frac{T_{\max}}{T_{\min}}\right), \quad (9)$$

where $I_{(T_{\min}<0.189)}$ is an indicator function equal to 1 if $T_{\min} < 0.189$ second and equal to 0 otherwise, implying that the form of the equation is simply $1 - \cos(a - b \ln (T_{\max}/T_{\min}))$ for periods larger than 0.189 sec. The variables T_{\min} and T_{\max} are used to denote the smaller and larger of the two periods of interest, respectively.

(Baker and Cornell, 2006)

ProEQUAKE Input Parameters Table 5.1 The ProEQUAKE Input File (GEQU.IN)

Input File	Variable Name	Definition of Input Variables	Variable
Line	(Input in free		Туре
Number	format)		
1	FRSI	Filenames for the simulated GRS inputs (ex. RSIxxx.RS)	Output
2	FRSO	Filenames for the computed GRS samples	Output
		(ex. RS0xxx.RS	
3	FACC	Filenames for the computed acceleration histories	Output
		(ex. ACCxxx.acc)	
4	FEQU	Filename for the simulated equ inputs (ex. GEQU001.equ)	Output/Input
5	FBASEL	Filename for the mean GRS amplitude	Input
		(ex. BASELINE.RSI)	
6	DAMPING	Damping ratio for the GRS input (in percent)	Input
6	GRAVACC	Acceleration of gravity for ground velocity and	Input
		displacement calculations	
7	DURATION	Duration of simulated acceleration histories (in seconds)	Input
7	TIMESTEP	Time step of simulated acceleration histories (in seconds)	Input
8	NSIMUL	Number of simulated seismic inputs for a single direction	Input
8	INITRSI	Initial SEED Random Number for RSIxxx.RS simulation	Input
8	INITACC	Initial SEED Random Number for ACCxxx.ACC simulation	Input
9	OPTMETH	Option for the Method used for GRS Simulation	Input
		= 0 for Method 2 in ASCE 04-2016 (Line 11 not needed)	
		= 1 for Method 1 in ASCE 04-2016 (Line 11 needed)	
9	DIR	Selected Input Direction:	Input
		= 0 for X	
		= 1 for Y	
		= 2 for Z	
10	F1	1st Frequency for calculation of the c.o.v. factor (in Hz)	Input
10	F2	2 nd Frequency for calculation of the c.o.v. factor (in Hz)	Input
11	OPTCOR	Option for GRS shape correlation structure:	Input
		= 0 for frequency-independent correlation length (scalar)	
		= 1 for frequency-dependent correlation length (vector)	
		= 2 for full correlation matrix for GRS amplitudes (matrix)	
11	COV	Coefficient of variation of the GRS amplitudes	Input
12	SIGMA	For OPTCOR = 0 Correlation length value input	Input
12	SIGMAV	For OPTCOR = 1 Correlation length vector input	Input
12	CORRMAT	For OPTCOR =2 Correlation matrix file name input	Input

RSIXXX.RS RSOXXX.RS ACCXXX.acc GEQUXXX.equ GRSMEAN.RSI 0.05 32.2 15 0.005 100 12345 153414 01 26.0 135.0 0.0.3 10

Correlation Length - "Strong Correlation Distance"

Constant vs. Variable Correlation Lengths

Probabilistic Vs and D Soil Profile 1D Models Using Multiple Homogeneous Segments

Different statistical properties for different soil profile segments in depth
Vs & D Profiles Using Continuous Process 1D Models. Two Variation Models, M1 and M2

Typical Probabilistic Vs Soil Profile Variations

Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Typical Probabilistic Vs Soil Profile Variations

Simulated Vs for 2ft & 20ft Correlation Lengths

ProSITE for Probabilistic Vs and D Soil Profiles

Simulated Vs Profiles for Nonuniform Soils Using Continuous Process Models

Probabilistic Simulations of Soil Profiles Using Discrete Process Model, Model 3 (Toro's Model)

Toro, G. R. (1995). "Probabilistic models of site velocity profiles for generic and sitespecific ground-motion amplification studies", Brookhaven National Laboratory.

Toro's Model (M3) If No Good Data Is Available

The Toro's model is a generic randomization of layer thicknesses (Toro, 1995) that results in a significant frequency shifts of peaks, and a decrease in in the amplitude of the motion site response spectral amplification. It was used in some past projects.

USNRC Vladimir Graizer, "Treasure Island Geotechnical Array Case Study for Site Response Analysis", 4th IASPEI/IAEE International Symposium: Effects of Surface Geology on Seismic Motion, UCSB, California, August 23–26,2011 states:

"This type of randomization of layer thicknesses is possibly useful in the situations" when site characterization is generic, for example in cases when detailed characterization from neighboring sites is applied to nearby location. Based on my tests, I do not recommend applying generic (Toro, 1995) type of layer thicknesses and S-wave velocity randomization in cases when layer and velocity profile are well determined (typical for many recent critical facilities requiring detailed P- and S-wave site characterization). I recommend applying randomization of velocity and layer thickness based on actual geologic and geotechnical measurements providing actual limits of variability." 44

ProSITE Soil Profile Modeling and Simulation

A. Gaussian Continuous Process Model, Models 1 (simplified) and 2 (accurate)B. Poisson Discrete Process Model, Model 3 (simplified, limited to power correlation)

ProSITE Input Blocks for Block B.1 Models 1 & 2

OPTVDCOR: Statistical Dependence for Vs and D

The OPTVDCOR variable controls the statistical dependence between the soil layer Vs and damping D values.

= 0 or 2. The options for values of 0 and 2 are straight forward.

= 1. For value of 1, the inverse statistical dependence is introduced based on the values that correspond to the same number of standard deviations from the mean values with changed sign.

- = 3. For value of 3, the statistical dependence between Vs and D is included based a given, user-defined response function Vs = f(D).
- =4. For value of 4, the statistical dependence is included by independently simulating the Vs and D sample values, and then pairing them, (Vs, D) in an inverse order (that corresponds to a rank correlation of -1.00).

WARNING: The OPTVDCOR = 1 option should be used only when Vs and D have normal distributions. If Vs and D have lognormal distributions, this option may produce too low damping values, as shown in Appendix 2.

OPTSPCOR: Spatial Correlation for Vs and D

The OPTSPCOR variable controls the option for soil profile spatial correlation structure with depth.

For OPTSPCOR values o

= 0, 1 and 2, the correlation is defined either by a constant or a variable correlation length that is defined for a generic, analytical Gaussian spatial correlation function with an inflection point defined at the half of the correlation length value, as shown in (left plot).
= 3. For the OPTSPCOR value of 3, a more general model based directly on the spatial correlation matrix is considered. This soil profile correlation matrix should be determined based on the on-site Vs and D soil profile data or site response simulations.

The correlation length vector and correlation matrix should be input in a free format.

OPTPROFIL: Soil Profiles By Models 1 and 2

The OPTPROFIL variable controls the selection of the random field models for Vs and D soil profiles idealized by Gaussian Continuous Process Model, with Normal or Lognormal PDF. For the OPTPROFIL values

= 0 for Model 1, the Vs and D profiles are modeled as 1D random fields

= 1 for Model 2, the Vs and D profiles are modeled as a superposition of two 1D random fields with significantly different spatial correlation wavelength content. The first random field should have a long wavelength variation with depth, while the second random field should have a short wavelength variation. For the OPTSPCOR value of 1, user has to input in addition to the statistical parameters of the short-wavelength component profile, the statistical parameters of the long-wavelength profile in terms of coefficient of variation and correlation length for each soil profile segment.

The superposition model is useful to simulate "slow-varying" type of random fields, rather than "rapid-oscillatory" type of random fields. The selection of the correlation structure depends on the statistical evidence obtained from the on-site Vs soil profile data.

ProSITE Input Block Details for Block B.1

Figure 5.3 GSITE.IN File Input Data Description

ProSITE Input Parameters for Block 1 (M1, M2)

Input BlockNumber	Input File Line Number Inside Each Block	Variable Name (Input file in free format)	Definition of Input Variables
BLOCK A			
	1	NOPTMETH	Option for selecting methods = 0 for Models 1 or 2 simulation = 1 for Model 3 simulation
BLOCK B.1:	BLOCK 1 BLOCK 6		
BLOCK 1			
1	1	NSIMUL	Number of simulated seismic input files
1	1	OPTPDF	Option for probability distribution for Vs and D = 0 for Normal distribution = 1 for Lognormal distribution
1	1	OPTVDCOR	Statistical dependence between soil layer Vs and D = 0 using a linear correlation coefficient = 1 assuming inverse variation based an equal number of standard variations from mean value = 2 assuming statistical independence = 3 using given response function Vs=f(D) provided by the user = 4 using inverse probability variation based on simulation of a statistical response function Vs=f(D), obtained for rank correlation is -1.0.

4

ProSITE Input Parameters for Blocks 1 and 2

1	1	OPTSPCOR	Spatial correlation structure with depth for Vs and D = 0 for constant correlation length with depth (scalar) = 1 for variable correlation length with depth (vector) = 2 for infinite correlation length (perfect correlation with depth) = 3 for using the spatial correlation matrix (matrix)
1	1	OPTPROFIL	Soil profile random field models for Vs and D = 0 Model 1, using a 1D random field = 1 Model 2, using a superposition of two random fields; a long-wavelength and a short-wavelength variation
1	2	FBASEL	Filename for the mean soil profile (ex. BASELINE.SIT)
1	3	FGSITE	Filenames of the simulated SITE inputs (ex. GSITExxx.sit)
1	4	NSEGM	Number of the soil profile segments
1	4	OPTHS	Option for the half-space layer random samples
			 = 0 independent from soil above = 1 full correlated with the soil layer above
BLOCK 2	Only for OPTHS=0		
2.1, 2.2	1	COVHSVS	Coefficient of variation for bedrock Vs
2.1	1	COVHSD	Coefficient of variation for bedrock D

ProSITE Input Parameters for Block 3

BLOCK 3	Start Loop J=1,NSEGM		Loop over the number of soil layer segments
3.1, 3.2, 3.3	1 Inside J Loop	NLAYSEG(J)	Number of layers in the segment (J)
3.1, 3.2, 3.3	1 Inside J Loop	COVVS(J)	Coefficient of variation of Vs(J)
3.1, 3.2, 3.3	1 Inside J Loop	INSEEDVS(J)	Initial SEED for Vs(J)
3.3	1 Inside J Loop	COVD(J)	Coefficient of variation of D(J)
3.3	1 Inside J Loop	INSEEDD(J)	Initial SEED for D(J)
3.1	2 Inside J Loop	NDATAFCT(J)	Number of response function data
3.1	2 Inside J Loop	ISEEDFCT(J)	Initial seed for response function noise
3.2	2 Inside J Loop	RSMEANVS(J)	Mean Vs for simulation (to compute Vs=f(D) response function based on assuming a rank correlation = -1)
3.2	2 Inside J Loop	RSCOVD(J)	Coefficient of variation of Vs for simulation (to compute Vs=f(D) function based on assuming a rank correlation = -1)
3.1	Start Loop I=1,NDATAFCT(J)		Loop over Vs=f(D)+noise response surface data
3.1	3 Inside J Loop/1 Inside I Loop	VSDAT(J,I)	Response function Vs data points
3.1	3 Inside J Loop/1 Inside I Loop	DDAT(J,I)	Response function D data points
3.1	3 Inside J Loop/1 Inside I Loop	VSNOISE(J,I)	Response function noise standard deviation
3.1	End Loop I=1,NDATAFCT(J)		
3.2	3 Inside J Loop	RSMEAND(J)	Mean D for simulation (to compute response function based on assuming a rank correlation = -1)
3.2	3 Inside J Loop	RSCOVD(J)	Coefficient of variation of D for simulation (to compute response function based on assuming a rank correlation = -1)
	End Loop J=1,NSEGM		

ProSITE Input Parameters for Blocks 4, 5 and 6

of soil layers
of soil layers
(1)
(J)
J)
ame
(J)
mping D(J)
etween Vs
of long-
of long- Vs profile
of long- Vs profile of long-
of long- Vs profile of long- D profile
of long- Vs profile of long- D profile e long-
of long- Vs profile of long- D profile e long- Vs profile
of long- Vs profile of long- D profile e long- Vs profile e long-
of long- Vs profile of long- D profile long- Vs profile long- D profile

Example for ProSITE Input Parameters

EXAMPLE 1: SOIL SITE – MODEL 1 WITH 4 SEGMENTS, VS AND D PROFILES WITH CONSTANT CORRELATION LENGTH, LOGNORMAL DISTRIBUTIONS, INVERSE VARIATION STATISTICAL DEPENDENCE FOR VS AND D

Figure A2.1 Shear Velocity Statistical Curves (Mean and Mean +/- Standard Deviation) and Simulated Samples (black); Computed Probability Curves based on Simulated Samples (blue line) are plotted Against Given Probability Curves (light green line)

0 100 1 1 0 1 BASESITE.SIT GSITEXXX.SIT 4 1 7 0.06 18542 0.06 32135 11 0.06 73322 0.06 52345 11 0.06 45621 0.06 67211 11 0.06 21854 0.06 14345 10.10.0 20.20.0 30.30.0 40.40.0 0.19400.0 0.19400.0 0.19 500.0 0.19 500.0 0.19 600.0 0.19 600.0 0.19700.0 0.19700.0

Figure 5.3 GSITE.IN File Input Data Description

	Input	Input File Line Number	Variable Name	Definition of Input Variables
	BlockNumber	Inside Each Block	(Input file in	
0			iree ioimat)	
100 1 1 0 1 BASESITE.SIT		1	NOPTMETH	Option for selecting methods = 0 for Models 1 or 2 simulation = 1 for Model 3 simulation
GSITEXXX.SIT	BLOCK B.1:	BLOCK 1 BLOCK 6		
4 1	BLOCK 1			
7 0.06 18542 0.06 32135	1	1	NSIMUL	Number of simulated seismic input files
11 0.06 73322 0.06 52345 11 0.06 45621 0.06 67211 11 0.06 21854 0.06 14345	1	1	OPTPDF	Option for probability distribution for Vs and D = 0 for Normal distribution = 1 for Lognormal distribution
10. 10.0 20. 20.0 30. 30.0 40. 40.0 0.19 400.0 0.19 400.0 0.19 500.0 0.19 500.0 0.19 600.0 0.19 600.0 0.19 700.0 0.19 700.0	1	1	OPTVDCOR	Statistical dependence between soil layer Vs and D = 0 using a linear correlation coefficient = 1 assuming inverse variation based an equal number of standard variations from mean value = 2 assuming statistical independence = 3 using given response function Vs=f(D) provided by the user = 4 using inverse probability variation based on simulation of a statistical response function Vs=f(D), obtained for rank correlation is -1.0.

0 1001101 BASESITE.SIT GSITEXXX.SIT 4 1 7 0.06 18542 0.06 32135 11 0.06 73322 0.06 52345 11 0.06 45621 0.06 67211 11 0.06 21854 0.06 14345 10.10.0 20.20.0 30.30.0 40.40.0 0.19 400.0 0.19 400.0 0.19 500.0 0.19 500.0 0.19 600.0 0.19 600.0 0.19 700.0 0.19 700.0

BLOCK 3	Start Loop J=1,NSEGM		Loop over the number of soil layer
			segments
3.1, 3.2, 3.3	1 inside J Loop	NLAYSEG(J)	Number of layers in the segment (J)
3.1, 3.2, 3.3	1 Inside J Loop	COVVS(J)	Coefficient of variation of Vs(J)
3.1, 3.2, 3,3	🧧 1 Inside J Loop	INSEEDVS(J)	Initial SEED for Vs(J)
3.3	1 Inside J Loop	COVD(J)	Coefficient of variation of D(J)
3.3	1 Inside J Loop	INSEEDD(J)	Initial SEED for D(J)
3.1	2 Inside J Loop	NDATAFCT(J)	Number of response function data
3.1	2 Inside J Loop	ISEEDFCT(J)	Initial seed for response function noise
3.2	2 Inside J Loop	RSMEANVS(J)	Mean Vs for simulation (to compute Vs=f(D) response function based on assuming a rank correlation = -1)
3.2	2 Inside J Loop	RSCOVD(J)	Coefficient of variation of Vs for simulation (to compute Vs=f(D) function based on assuming a rank correlation = -1)
3.1	Start Loop I=1,NDATAFCT(J)		Loop over Vs=f(D)+noise response surface data
3.1	3 Inside J Loop/1 Inside I Loop	VSDAT(J,I)	Response function Vs data points
3.1	3 Inside J Loop/1 Inside I Loop	DDAT(J,I)	Response function D data points
3.1	3 Inside J Loop/1 Inside I Loop	VSNOISE(J,I)	Response function noise standard deviation
3.1	End Loop I=1,NDATAFCT(J)		
3.2	3 Inside J Loop	RSMEAND(J)	Mean D for simulation (to compute response function based on assuming a rank correlation = -1)
3.2	3 Inside J Loop	RSCOVD(J)	Coefficient of variation of D for simulation (to compute response function based on assuming a rank correlation = -1)
	End Loop J=1,NSEGM		

0 1001101 BASESITE.SIT GSITEXXX.SIT 4 1 7 0.06 18542 0.06 32135 11 0.06 73322 0.06 52345 11 0.06 45621 0.06 67211 11 0.06 21854 0.06 14345 10, 10,0 20.20.0 30.30.0 40.40.0 0.19 400.0 0.19 400.0 0.19 500.0 0.19 500.0 0.19 600.0 0.19 600.0 0.19 700.0 0.19 700.0

		1	
BLOCK 4			
4.1, 4.2	Start Loop J=1,NTLAYER		Loop over the number of soil layers
4.1,4.2	1 Inside J Loop	CORLVS(J)	Correlation length of Vs(J)
4.1	1 Inside J Loop	CORLD(J)	Correlation length of D(J)
4.1, 4.2	End Loop J=1,NTLAYER		
4.3	1	CORMAT	Correlation matrix file name
4.4, 4.5	Start Loop J=1,NSEGM		
4.4,4.5	1 Inside Loop J	CORLVS(J)	Correlation length of Vs(J)
4.5	1 Inside Loop J	CORLD(J)	Correlation length of Damping D(J)
4.4,4.5	End of Loop J=1,NSEGM		
BLOCK 5			
5	1	CORVSD	Correlation coefficient between Vs and D profiles
BLOCK 6			

EXAMPLE 10: LAYER THICKNESS AND VS SIMULATION BY USING DISCRETE PROCESS MODEL

Figure A2.19 Thickness and Vs Mean Curves (red dotted) and Simulated Samples (black); Computed Probability Curves based on Input line (blue line) are plotted

ProSITE Input Parameters for Block 2 (M3)

BLOCK B.2			
	1	NSIMUL	Number of simulated seismic input files
	1	MOPTDVS	The option for simulating thickness and vs = 0 only for simulating thickness = 1 simulating both thickness and vs
	1	NLAYTHK	The number of layering to start simulation
	1	XTHKSEED	The initial seed number
Lavor	2	FBASEL	Filename for the mean soil profile (ex. BASELINE.SIT)
thickness	3	FGSITE	Filenames for the simulated SITE
variation	4	AX	Coefficient parameter of the fitted model
	4 (BX	Initial parameter of the fitted model
	4	CX	Exponent parameter of the fitted model
	4	FMAX	Maximum frequency number
	If MOPTDVS=1		
Vs values	5	DELTA	The parameter to change in correlation with depth
variation	5	P0	Correlation coefficient at surface level
	5	P200	Correlation coefficient at 200m depth level
	5	XCOV	c.o.v. for simulating VS
	5	XVSEED	Initial seed number for simulating VS

ProSOIL Simulation of Soil Material Behavior

NMAT2CUR, NSEGM, NSIMUL, NDIR, MOPT FBASEL FGSOIL FGSITE

Block 1

Loop J=1, NTCURVE SEEDMAT(J) END LOOP J

Block 2

Loop I=1, NTYPE NCURV(I), NDATA(I), CORL(I), GCOV(I), DCOV(I) Loop J=1, NDATA(I) SCALE(I,J)) END LOOP J END LOOP J END LOOP I Block 3 IF MOPT=1, THEN DMAX ENDIF

ProSOIL Simulation of Soil Material Behavior

ProSOIL Input Parameters for Blocks 1 and 2

Input BlockNumber	Input File Line Number Inside Each Block	Variable Name (Input file in free format)	Definition of Input Variables
BLOCK 1			
1	1	NMAT2CUR	Number of soil material curves (this is twice than number of materials)
1	1	NSEGM	Number of the soil profile segments (or number of sets of multiple soil layers above half-space)
1	1	NSIMUL	Number of simulations
1	1	NDIR	Seismic input direction = 0 horizontal (uses Vs) = 1 vertical (uses Vn)
1	1	MOPT	Option to cut-off D-GAMMA curve = 0 No cut-off =1 Cut-off
1	2	FBASEL	Filename for the mean soil profile (ex. BASELINE.SOI)
1	3	FGSOIL	Filenames for the simulated SOIL inputs (ex. GSOILxxx.sit)
1	4	FGSITE	Filenames for the simulated SITE inputs (ex. GSITExxx.sit)
BLOCK 2	Start Loop J=1, NMAT2CUR		
	1 Inside of I Loop	SEEDMAT(J)	Seed number of material curve (J)
	End Loop J=1, NMAT2CUR		

ProSOIL Input Parameters for Blocks 3 and 4

BLOCK 3	Start Loop I=1, NSEGM		
	1 Inside of I Loop	NCURV(I)	Number of material curves for soil segment (i)
	1 Inside of I Loop	NDATA(I)	Number of data points for material curvesin segment (i)
	1 Inside of I Loop	CORL(I)	Correlation length for segment (i)
	1 Inside of I Loop	GCOV(I)	Coefficient of variation for the low-strain shear modulus for segment (i)
	1 Inside of I Loop	DCOV(I)	Coefficient of variation for the low-strain damping for segment (i)
	Start Loop K=1, NDATA(I)		
	1 Inside of K Loop	SCALE(I,K)	Reduction factor for the coefficients of variations as a function of the soil shear strain
	End Loop K=1, NDATA(I)		
	End Loop I=1, NSEGM		
BLOCK 4	If MOPT = 1		
	DMAX		Max value to cut-off D-Gamma curve

EXAMPLE 1: 3 SOIL LAYERING MATERIAL CURVES

ght of Ghiocel Predictive reannoingies, men an rights reserved. 5 Day actions introductory framing roles

EXAMPLE 1: 3 SOIL LAYERING MATERIAL CURVES

ProHOUSE for Structure (or Soil) Properties

This ProHOUSE Module has two optional inputs:

- Option 1: For 2D or 3D structure FE models, input the structure effective stiffness and damping per element group, or
- Option 2: For 2D soil models, input Vs and D soil profiles with random variations in both vertical and horizontal directions.

The first line of the input file 'GHOU.IN' lists the option: 0 for 3D simulations and 1 for 2D simulations.

Option 1: Probabilistic Structural Models; Effective Stiffness and Damping Depend on Wall Strain Levels

- Keff/Kel and Deff variables should defined by user *for each element group*.
- Effective stiffness ratio Keff/Kelastic and damping ratio, Deff, should be modeled as *statistically dependent* random variables. They can be considered *negatively correlated*, or Deff defined as a *response function* of Keff/Kelastic based on experimental tests.

Effective Wall Stiffness and Damping Can Be Computed with Option NON as Function of Shear Strain

An accurate approach for the low-rise concrete shearwall structures for estimating the effective stiffness and effective damping for each simulation due to the in-plane shear deformation is based on the Option NON that computes automatically these parameters based on the physical behavior of the concrete structure walls.

If Option NON is used, the initial values of the effective stiffness and effective damping for all concrete elements should be based on the uncracked concrete behavior that is 1.00 (uncracked elastic modulus) and 4% damping ratio.

ProNON should be used to simulate probabilistic BBCs for the concrete wall shear deformation.

Option 2: Simulated Vs and D Soil Profiles for Uniform Deep Soil Deposit

Vs and D Simulation for Correlation Lengths of 60m x 10m

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

Horizonta

400

-180

Probabilistic Simulations Vs and D Soil Profiles for Nonuniform Soil at Pinyon Flat (1000m H x 500m V Area)

Armenian NPP Project Used 2D Probabilistic Soil Models

ProHOUSE Input for Option 1 (Block B.1)

NMODGRP, NSIMUL, OPTCOR, IEMB *IF IEMB = 1 THEN* FGSITE FBASEL FGHOU

Block 1

NMODGRP Variable for Material Randomization

The NMODGRP variable is the number of material groups used by the analyst to define the statistical dependency status between different materials. It should be noted that different materials in the same or different element groups can be either statistically independent or perfectly correlated. The material groups includes a number of subsets of materials that are statistically independent.

For example, if an element group has five materials which are considered all statistically independent, then, all these five materials belong to the same single material group. If all five materials are considered perfectly correlated, then, each material has to be defined in a separate group with the same SEEDST number. Each material group includes a single material. If the SEEDST number is not the same between different material groups, then, the material groups are statistically independent. Thus, the SEEDST number is used to control the statistical dependency, independent or perfectly correlated, between material groups. It should be noted that the materials should not necessarily belong to the same element group. 78

OPTCOR Variable for Statistical Dependence Between Stiffness and Damping Variations

The ProHOUSE module includes three options to handle the dependency between the effective stiffness reduction and the damping increase. These options are controlled by the OPTCOR input variable.

The four dependency options between the stiffness reduction and the damping correspond to:

- 1) correlated variables (Blocks 3.1 and 4),
- 2) independent variables (Block 3.1), and
- 3) damping is a function of stiffness reduction (Block 3.2).

Input BlockNumber	Input File Line Number Inside Each Block	Variable Name (Input file in free format)	Definition of Input Variables
BLOCK A			
1	1	OPTDIM	Dimension selection: =0 Structure Material Properies =1 2D Soil Model Vs and D Properties
BLOCK B.1:			
BLOCK 1			
1	1	NMODGRP	Number of element groups that are modified (groups can be repeated for different independent materials)
1	1	NSIMUL	Number of simulations
1	1	OPTCOR	Option for statistical dependency between stiffness reduction and damping = 0 Correlated random variables = 1 Independent random variables = 2 Deterministic functional dependence; damping is a function of stiffness reduction
1	1	IEMB	Model option: 0 = surface model 1 = embedded model
		FOOITE	
1	2 (for IEMB=1)	FGSITE	SITE simulated files (GSTTExxx.sit)
1	2 (for IEMB=0) or 3 (for IEMB=1)	FBASEL	Baseline input file (BASELINE.HOU)
1	3 (for IEMB=0) or 4 (for IEMB=1)	FGHOU	HOUSE simulated files (GHOUxxx.hou)

BLOCK 2	Start Loop J=1,NMODGRP		
2	1 Inside of J Loop	JGROUP(J)	Number of the element group
2	1 Inside of J Loop	NTYPE(J)	Element property type: 1 = Concrete type property, E materials 2 = Soil type property, Vp and Vs 3 = Spring properties
2	1 Inside of J Loop	NMAT(J)	Number of materials in JGROUP(J) that use the same SEEDST(J); fully correlated
2	1 Inside of J Loop	SEEDST(J)	Seed number for stiffness simulation
2	Start Loop N=1,NMAT(J)		
2	1 Inside of N Loop	JNVAR(J,N)	"E" Material number for JGROUP(J)
2	If NTYPE(J) = 1	STFMEAN(J,N)	Stiffness reduction factor mean for JNVAR(J)
2		STFCOV(J,N)	Stiffness reduction factor coefficient of variation for JNVAR(J)
	1 Inside of N Loop	JNVAR(J,N)	"Soil Property" number for JGROUP(J)
	If $NTYPE(J) = 2$	VPMEAN(J,N)	VP reduction factor mean for JNVAR(J)
		VPCOV(J,N)	VP reduction factor coefficient of variation for JNVAR(J)

	VSMEAN(J,N)	VS reduction factor mean for JNVAR(J)
	VSCOV(J,N)	VS reduction factor coefficient of variation for JNVAR(J)
1 Inside of N Loop	JNVAR(J,N)	"Spring Property" number for JGROUP(J)
If NTYPE(J) = 3	XMEAN(J,N)	X Stiffness reduction factor mean for JNVAR(J)
	XCOV(J,N)	X Stiffness reduction factor coefficient of variation for JNVAR(J)
	YMEAN(J,N)	Y Stiffness reduction factor mean for JNVAR(J)
	YCOV(J,N)	Y Stiffness reduction factor coefficient of variation for JNVAR(J)
	ZMEAN(J,N)	Z Stiffness reduction factor mean for JNVAR(J)
	ZCOV(J,N)	Z Stiffness reduction factor coefficient of variation for JNVAR(J)
	XXMEAN(J,N)	XX Stiffness reduction factor mean for JNVAR(J)
	XXCOV(J,N)	XX Stiffness reduction factor coefficient of variation for JNVAR(J)
	YYMEAN(J,N)	YY Stiffness reduction factor mean for JNVAR(J)
	YYCOV(J,N)	YY Stiffness reduction factor coefficient of variation for JNVAR(J)
	ZZMEAN(J,N)	ZZ Stiffness reduction factor mean for JNVAR(J)
	ZZCOV(J,N)	ZZ Stiffness reduction factor coefficient of variation for JNVAR(J)
End Loop N=1,NMAT(J)		

1		1	
BLOCK 3			
3.1	3.1 1		Seed number for the damping simulation
3.1	Start Loop		
	N=1,NMAT(J)		
3.1	1 Inside N Loop	DMEAN(J,N)	Damping mean for JNVAR(J)
3.1	3.1 1 Inside N Loop		Damping coefficient of variation for JNVAR(J)
3.1	End Loop N=1,NMAT(J)		
3.2	1	NDATA(J)	Number of data points for damping as a function of stiffness reduction factor (<100)
3.2	Start Loop		
	K=1,NDATÁ(J)		
3.2	1 Inside K Loop	STRESF(J,K)	Stiffness value at data points
3.2	1 Inside K Loop	DRESF(J,K)	Damping value at data points
3.2	3.2 End Loop K=1,NDATA(J)		
3.1,.3.2	End Loop J=1, NMODGRP		
BLOCK 4			
	1	CORRSTD	Correlation between stiffness reduction factor and damping

EXAMPLE 3: EMBEDDED SSI MODEL WITH SOIL PROPERTIES, SINGLE ELEMENT GROUP, STIFFNESS REDUCTION FACTOR (SRF) AND DAMPING D ARE STATISTICALLY CORRELATED WITH C.C. = - 0.80

0 3 30 0 1 GSITEXXX.SIT BASELINE.hou HOUSEXXX.hou 2 1 1 34511 1 0.7 0.1 56789 0.07 0.15 3 1 1 13451 1 0.9 0.1 15289 0.04 0.15 5 1 1 10951 1 0.9 0.1 64578 0.03 0.15 -0.8

EXAMPLE 3: EMBEDDED SSI MODEL WITH SOIL PROPERTIES, SINGLE ELEMENT GROUP, STIFFNESS REDUCTION FACTOR (SRF) AND DAMPING D ARE STATISTICALLY CORRELATED WITH C.C. = - 0.80

EXAMPLE 3: EMBEDDED SSI MODEL WITH SOIL PROPERTIES, SINGLE ELEMENT GROUP, STIFFNESS REDUCTION FACTOR (SRF) AND DAMPING D ARE STATISTICALLY CORRELATED WITH C.C. = - 0.80

1				
	BLOCK 2	Start Loop		
0	2	J=1,NWODGKP		Number of the element group
	2	1 Inside of JL oop	NTYPE(1)	Element property type:
3 30 0 1	2			1 = Concrete type property. E materials
GSITEXXX.SIT				2 = Soil type property, Vp and Vs
BASELINE hou				3 = Spring properties
DASELINE.NOU	2	1 Inside of J Loop	NMAT(J)	Number of materials in JGROUP(J) that
HOUSEXXX.hou	0			use the same SEEDST(J); fully correlated
2 1 1 34511	2	1 Inside of J Loop	SEEDST(J)	Seed number for stiffness simulation
	2			
1 0.7 0.1	2	1 Inside of N Loop	JNVAR(J,N)	"E" Material number for JGROUP(J)
56789	2	If NTYPE(J) = 1	STFMEAN(J,N)	Stiffness reduction factor mean for
0.07.0.15				JNVAR(J)
0.07 0.15	2		STFCOV(J,N)	Stiffness reduction factor coefficient of
3 1 1 13451				variation for JNVAR(J)
1 0 9 0 1	BLOCK 3			Cool number for the domining since lation
15080	3.1	Start Loop	SEEDD(J)	Seed number for the damping simulation
15269	5.1			
0.04 0.15	3.1	1 Inside N Loop	DMEAN(J,N)	Damping mean for JNVAR(J)
5 1 1 10951	3.1	1 Inside N Loop	DCOV(J,N)	Damping coefficient of variation for
1 0 0 0 1				JNVAR(J)
1 0.9 0.1	3.1	End Loop N=1,NMAT(J)		
64578	3.2	1	NDATA(J)	Number of data points for damping as a function of stiffness reduction factor (<100)
0.03 0.15	3.2	Start Loon		runction of stimess reduction factor (<100)
0.00 0.10	0.2	K=1.NDATA(J)		
-0.8	3.2	1 Inside K Loop	STRESF(J,K)	Stiffness value at data points
	3.2	1 Inside K Loop	DRESF(J,K)	Damping value at data points
	3.2	End Loop		
	04.00	K=1,NDATA(J)		
	3.1,.3.2	End Loop J=1,		
	BLOCK 4	NINODGRE		
	DLOOK 4	1	CORRSTD	Correlation between stiffness reduction
2021 Commints of Chinesel				factor and damping

2021 Copyright of Ghioce

ProHOUSE Input for Option 2, Block B.2

NSIMUL, OPTCOR, OPTDIST FBASEL FGHOU

Block 1

VSHCOLL, VSVCOLL, VSCOV, VS_SEED DPHCOLL, DPVCOLL, DPCOV, DP_SEED

Block 2

IF OPTCOR = 1 CORRSTD Block 3

ProHOUSE Input for Option 2, Block B.2

Input Block	Input File Line Number	Variable Name	Definition of Input Variables
Number	Inside Each Block	(Input file in	
		free format)	
BLOCK A			
1	1	OPTDIM	Dimension selection:
			=0 Structure Material Properties
			=1 2D Soil Model Vs and D Properties
BLOCK B.2			
BLOCK 1			
1	1	NSIMUL	Number of simulations
	1	OPTCOR	Option for correlation between shear
			velocity and damping
			= 0 Correlated
			= 1 No Correlated
1	1	OPTDIST	Option for Distribution which simulated
			outputs must follow
			= 0 Normal Distribution
			= 1Lognormal Distribution
1	2	FBASEL	Baseline input file (BASELINE.HOU)
1	3	FGHOU	HOUSE simulated files (GHOUxxx.hou)
BLOCK 2			
2	1	VSHCOLL	Correlation Length of Horizontal for Vs
2	1	VSVCOLL	Correlation Length of Vertical for Vs
2	1	VSCOV	coefficient of variation for Vs
2	1	VS_SEED	InitialSeed number for Vs simulation
2	2	DPHCOLL	Correlation Length of Horizontal for
			Damping
2	2	DPVCOLL	Correlation Length of Vertical for Damping
2	2	DPCOV	coefficient of variation for Damping
2	2	DP_SEED	InitialSeed number for Damping simulation
BLOCK 3			
3	1	CORRSTD	Correlation between shear velocity
			reduction factor and damping

EXAMPLE 4: FOR 2D LAYERED SOIL MODEL: SIMULATED SOIL SHEAR VELOCITY VS AND DAMPING D AS GAUSSIAN STOCHASTIC FIELDS WITH SEPARATED SPATIAL CORRELATION STRUCTURE FOR HORIZONTAL AND VERTICAL DIRECTIONS, AND NEGATIVELY INTER-CORRELATED

-400

Vertical (Depth)

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

n.

Horizontal

100

200

300

400

-500

EXAMPLE 4: FOR 2D LAYERED SOIL MODEL: SIMULATED SOIL SHEAR VELOCITY VS AND DAMPING D AS GAUSSIAN STOCHASTIC FIELDS WITH SEPARATED SPATIAL CORRELATION STRUCTURE FOR HORIZONTAL AND VERTICAL DIRECTIONS, AND NEGATIVELY INTER-CORRELATED

ProNON Simulates Randomized BBCs for Option NON

ProNON for BBC Simulations for Option NON

Input File	Variable Name	Definition of Input Variables	Variable
Line	(Input in free		Туре
Number	format)		
1	NSIMUL	Number of simulations	Input
1	XM	Mean of Uncertainty Scale Factor	Input
1	XCOV	C.O.V of Uncertainty Scale Factor (Input
1	ISEED	Initial Seed Number of Uncertainty Scale Factor	Input
2	FBASEL	Baseline input file (BASELINE.EQL)	Input
3	FGEQL	Simulated input samples for the nonlinear runs	
		(.eql extension)	
4	FBASEH	Baseline hou input file (BASELINE.HOU)	Input
5	FGHOU	Simulated input *.HOU files	Input
		(.hou extension)	-
6	NOPT	Option to set the maximum of strain	Input
		(0=use maximum of simulations, 1=users define)	-
7	XSTRAIN	Maximum of strain (if NOPT = 1)	Input

EXAMPLE 1. Simulation of Wall Panel BBCs

ProMOTION Input Parameters

Table 5.6ProMOTION Input File (GMOT.IN)

Input File	Variable Name	Definition of Input Variables	Variable
Line	(Input in free		Туре
Number	format)		
1	NSIMUL	Number of simulations	Input
1	NOPT	Option to Scale Time History (0=No, 1=Yes)	Input
2	FINACC	Input acceleration file names (.acc extension)	Input
3	FBASEL	Baseline input file (BASELINE.MOT)	Input
4	FGMOT	Simulated input samples for the MOTION runs	Output
		(.mot extension)	
5	XM	Meanof Uncertainty Scale Factor (if NOPT=1)	Input
5	XCOV	C.O.V of Uncertainty Scale Factor (if NOPT=1)	Input
5	ISEED	Initial SeedNumberof Uncertainty Scale Factor (if NOPT=1)	Input

ProSTRESS Input Parameters

Table 5.7ProSTRESS Input File (GSTR.IN)

Input File	Variable Name	Definition of Input Variables	
Line	(Input in free		Туре
Number	format)		
1	NSIMUL	Number of simulations	Input
1	NOPT	Option to Scale Time History (0=No, 1=Yes)	Input
2	FINACC	Input acceleration file names (.acc extension)	Input
3	FBASEL	Baseline input file (BASELINE.STR)	Input
4	FGSTR	Simulated input samples for the STRESS runs	
		(.str extension)	
5	XM	Meanof Uncertainty Scale Factor (if NOPT=1)	Input
5	XCOV	C.O.V of Uncertainty Scale Factor (if NOPT=1)	Input
5	ISEED	Initial SeedNumberof Uncertainty Scale Factor (if NOPT=1)	Input

ProSRSS Input Parameters

Input Block Number	Input File Line Number Inside Each Block	Variable Name (Input file in free format)	Definition of Input Variables
BLOCK			
1			
1	1	NSIM	Number of simulations
1	1	NRESP	Number of generic response files
1	1	OPTOUT	Option for response type to be computed = 0 Acceleration response spectra (extensionrxxx) = 1 Stress/forces in structural elements
			(extension .oxxx)
BLOCK			
2			
21	Start Loop		
2.1	J=1,NRESP		
2.1	1 Inside Loop J	FIN(J)	Acceleration response spectra
2.1	End Loop		
	J=1,NRESP		
2.2	1	FSTR	Stress input (*.str), RDISP input (*.rdi)
2.2	Start Loop		
2.2	J=1,NRESP		
2.2	1 Inside Loop J	FIN(J)	Stress outputs, relative displacement outputs
2.2	End Loop		
2.2	J=1,NRESP		

Example of ProSRSS Input Parameters

EXAMPLE 1:

The example input files are in the folder called .\Examples\ProSRSS\Ex1. The input filename is SRSS-RS.IN. This case is used to combine nodal SRSS for 3 directories X, Y, Z.

The text content of the GSOIL.IN is

30 9 0 00001TR_X01.rXXX 00001TR_Y01.rXXX 00001TR_Z01.rXXX 00151TR_X01.rXXX 00151TR_Y01.rXXX 00151TR_Z01.rXXX 00158TR_X01.rXXX 00158TR_Y01.rXXX 00158TR_Y01.rXXX

EXAMPLE 2:

The example input files are in the folder called .\Examples\ProSRSS\Ex2. The input filename is SRSS-STRESS.IN. This case is used to combine stress SRSS for 3 directories X, Y, Z.

The text content of the GSOIL.IN is

60 1 1 STRESS.STR STRESS.OXXX

ProRESPONSE Input Parameter Loops

Figure 5.7 GRESP.IN Data Description

ProRESPONSE Input Parameters

Table 5.8 ProRESPONSE Input File (GRESP.IN)

Input BlockNum ber	Input File Line Number Inside Each Block	Variable Name (Input file in free format)	Definition of Input Variables
BLOCK 1			
1	1	NOPTINP	Options for inputs: = 0 Acceleration response spectra (extension .rxxx files) = 1 Uninterpolated transfer functions (extension .uxxx files) = 2 Interpolated transfer functions(extension .ixxx files) = 3 Maximum stress output (extension .oxxx files)
1	1	NOPTOUT	Options for outputs: = 0 Mean response will be computed = 1 Probability level response to be computed
BLOCK 2			
2.1, 2.2	1	NSIM	Number of simulations
2.1,2.2	1	NFINP	Number of generic simulated response files to be used as inputs for ProRESPONSE
2.2	1	IDTYPE	Probability distribution type

ProRESPONSE Input Parameters (Continuation)

E H		I		ł
				0 = Sample distribution (using sample CDF)
				1 = Lognormal distribution
				2 = Gumbel distribution
	2.2	1	NPROB	Number of probability levels
	2.2	Start Loop K=1,NPROB		
ſ	2.2	1 Inside Loop K	PROBVAL(J)	Non-exceedance probability (NEP)for
				computing probabilistic SSI responses (for P1,
				P2, P3)
	2.2	End Loop K=1,NPROB		
	2.1,2.2	Start Loop J=1,NFINP		
Γ	2.1,2.2	1 Inside Loop J	FINP(J)	Generic input file name for simulated response
				files to be used as inputs by ProRESPONSE
	2.1,2.2	End of Loop J=1,NFINP		
_				

Example of ProRESPONSE Input Parameters

The text content of the RS-MEAN.IN is

0 0 30 3 00001TR_X01.rXXX 00151TR_X01.rXXX 00158TR_X01.rXXX

The text content of the GumbelD.IN is

0 1 30 3 2 2 0.8 0.95 00001TR_X01.rXXX 00151TR_X01.rXXX 00158TR_X01.rXXX

The text content of the LognormalD.IN is

0 1 30 3 1 2 0.8 0.95 00001TR_X01.rXXX 00151TR_X01.rXXX 00158TR_X01.rXXX

The text content of the SampleD.IN is

0 1 30 3 0 2 0.8 0.95 00001TR_X01.rXXX 00151TR_X01.rXXX 00158TR_X01.rXXX

Figure A8.1Node 1 RS Probability Level Curves for Mean. and 80% and 95% NEP

Example of ProRESPONSE Input Parameters

The text content of the RS-MEAN.IN is

3 0 60 1 stress.oXXX

The text content of the GumbelD.IN is

3 1 60 1 2 2 0.8 0.95 stress.oXXX

The text content of the LognormalD.IN is

3 1 60 1 1 2 0.8 0.95 stress.oXXX

The text content of the SampleD.IN is

Figure A8.6 Probabilistic Maximum SXX Stress with 80% and 95% NEP

3 1 60 1 0 2 0.8 0.95 stress.oXXX

See Example files and V&V for PSRA and PSSIA

Option UPLIFT:

Foundation Uplift SSI Analysis

(Nonlinear uplift approach is developed based on the JEAC 4601-2015 standard Section 3.5.5.4 and App. 3.6 recommendations)

JEAC 4601-2015 Section 3.5.5.4 and App. 3.6

The JEAC 4601-2015 standard [1] recommends two nonlinear uplift approaches applicable based on the basemat uplift severity:

- 1) A simplified nonlinear uplift approach (Method 1) applicable if the basemat surface contact ratio is in the 65%-75% range, and
- 2) A refined nonlinear dynamic uplift approach (Method 2) applicable if the surface contact ratio is in the 50%-65% range

JEAC 4601 Contact Ratio Criteria for Seismic Uplift SSI Analysis

2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

107

Contact Surface Ratio is above 65% 1) Simpler Approach for Uplift (Multistep SSI Analysis)

Contact Surface Ratio is above 50% 1) Refined Approach (Multistep SSI Analysis)

- Includes coupling between the basemat vertical uplift motion and its rocking motion
- Contact ratio given as a function of time which

$$\eta(t) = \left(\frac{\theta(t)}{\theta_0}\right)^{\frac{2}{\alpha-2}}$$

 Compute the base center displacements u(t), v(t), and θ(t) for one horizontal direction X or Y by solving ordinary differential equations (ODE)

$$\begin{bmatrix} S(t) \\ N(t) \\ M(t) \end{bmatrix} = \begin{bmatrix} K_H(t) & 0 & 0 \\ 0 & K_V(t) & K_{V\theta}(t) \\ 0 & K_{\theta V}(t) & K_{\theta}(t) \end{bmatrix} \begin{cases} w(t) \\ v(t) \\ \theta(t) \end{cases} + \begin{bmatrix} C_H(t) & 0 & 0 \\ 0 & C_V(t) & 0 \\ 0 & 0 & C_{\theta}(t) \end{bmatrix} \begin{pmatrix} \dot{u}(t) \\ \dot{v}(t) \\ \dot{\theta}(t) \end{pmatrix}$$

ACS SASSI Option UPLIFT Modules

The ACS SASSI Option UPLIFT SSI analysis capability is implemented based on three specialized software modules:

1) UPLIFT_3DFEM module – Computes threshold moments, Mx, My

2) GLOBAL_IMP module – Computes global impedance for dominant frequency

3) UPLIFT_JEAC_4601_2015 – Integrates base motion differential equation

The three UPLIFT modules can be efficiently run without the user intervention based on the batch run files provided with Demo 17. Demo 17 includes UPLIFT SSI case studies for a surface 3DFEM RB and a Stick/SR model, and for an embedded 3DFEM RB model.

ACS SASSI Uplift SSI Approach for Embedded Structures Based on JEAC 4601-2015

For the *surface* structures, the computational efforts are significantly reduced, since the Steps 2 and 3 are not required, and Step 4 reduces to direct ANALYS "Initiation" (Mode1) run.

For the surface models, there is no need to compute the condensed soil impedance matrix, which is a computationally intensive step.

For the *embedded* structures, two options are available:

1) 2-Step Uplift Analysis (2SUA) using Modified model is Stage 1 (for IEMBL=1) and then Design-condition model in Stage 2 (IEMBL=2).

2) 1-Step Uplift Analysis (1SUA) using Design-condition model(IEMBL=3)

The 2-Step uplift SSI analysis (2SUA) is consistent with the current practice in Japan.

2-Step Uplift SSI Analysis for Embedded Models

<u>Stage 1</u> for IEMB=1. Use the Modified embedded SSI model with no lateral connecting springs or with very low stiffnesses (created using MERGESOIL) to simulate soil separation at the side-soil interface to compute the soil reaction parameters α for X and Y directions (using the UPLIFT_3DFEM module only, up to Step 5 in Figure 2), and

<u>Stage 2</u> for IEMBL=2. Use the Design-condition embedded SSI model with the soil reaction parameters α computed in Stage 1 to perform an uplift SSI analysis (using the UPLIFT_3DFEM, GLOBAL_IMP and UPLIFT_JEAC_4601 modules, including all 8 steps in Figure 2)

Computation of Base Threshold Moments Under Gravity (Static) and Seismic (Dynamic) Loads UPLIFT_3DFEM Module

 $\eta = \frac{A_{contact}}{A_{total}}$ is computed based on the springs in tension $\gamma = \left| \frac{F^{static}}{F^{dynamic}} \right|$ Force scaling coefficients $M_{0} = \sum_{j} (F_{j}^{static} + \gamma F_{j}^{dynamic}) \cdot d_{j}$ is computed for no-tensile springs Seismic Tensioned Springs N(t) M(t) is computed by linear θ_0 S(t) regression *Critical spring* based on the no-tension force criterion Gravity Compressed Springs corresponds to the *minimum spring scale factor*.

Nonlinear Uplift Limit Base Moments (Mo) for X and Y Directions

Computing Uplift Limit Moment MoXX Using Contact Spring Forces for S+G Effects

Base Rocking Displacement for Transverse Y-Direction for Largest Uplift at Time 5.02 sec.

Nonlinear Uplift Analysis by Solving Base Motion **ODE Equations with Time Varying Coefficients** $K_{v,xx}$ K_{v,yy} 0 N $\tilde{K}_{x,yy}$ 0 S_{x} x Х $K_{y,xx}$ K_{ν} 0 0 U V $K_{y,xx}$ θ_{xx} 0 0 M $\left(\right)$ 0 xx.vхх xx K_{yy} 0 0 () M Damping **Stiffness** $\frac{\left(\frac{\theta(t)}{\theta_0}\right)^{\frac{1}{\alpha-2}}}{K_{V\theta}(t)} = \frac{\eta(t)^{\beta}K_V(0)}{K_V(0)} \qquad C_V(t) = \frac{1-\eta(t)}{2}L \cdot K_V(t) \qquad C_{V\theta} = 0$ $C_V(t) = C_V(0) \cdot \eta(t)^{\frac{n}{2}}$ $\eta(t) =$ $K_{\theta}(t) = \frac{M(t) - K_{V\theta}(t) \cdot v(t)}{\theta(t)} \quad C_{\theta} = C_{\theta}(0) \cdot \eta(t)^{\frac{\alpha}{2}}$

Uplift produces reductions of vertical and rocking soil impedances plus their coupling,

Slight Frequency Shift for Soil Rocking and Vertical Impedances Due to Nonlinear Uplift Effect

Application to Embedded Structures Using Separated Impedances for Bottom and Side Soil

 $K_{\theta} = \sum_{i} \left(K_{\theta j}^{B} + K_{\theta j}^{S} \right)$

 $K_{\theta H} = \sum_{i} K^{s}_{\theta H j}$

 $F_{X1}^{s} = \frac{K_{X1}^{s} \delta_{\theta} h_{1}}{K_{1}^{s} \delta_{\theta} h_{1}}$

 $F_z^B = K_z^B \delta_\theta d_j \checkmark$

 $K_{H} = \sum_{j} (\gamma_{BX} K_{Xj}^{B} + \gamma_{SX} K_{Xj}^{S})$ Only bottom soil impedance is reduced $K_{H\theta} = \sum_{j} \gamma_{SX} K_{Xj}^{S} h_{j}$ $\mathbf{K(\eta) = \mathbf{K}^{\mathbf{B}}(\eta) + \mathbf{K}^{\mathbf{S}}$ $K_{V} = \sum_{j} (\gamma_{BZ} K_{Zj}^{B} + \gamma_{SZ} K_{Zj}^{S})$ $K_{V\theta} = \sum_{j} \gamma_{SZ} K_{Zj}^{S} h_{j}$

> Includes stiffness reduction factors for the local soil impedances computed based on the "condensed" excavation impedance matrix (ANALYS "Condense Impedance" Option)

 $M_{ heta H}$ 2021 Copyright of Ghiocel Predictive Technologies, Inc.. All Rights Reserved. 5-Day ACS SASSI Introductory Training Notes

 $F_{X2}^s = K_{X2}^s \delta_\theta h_2$

Contact Surface for Large Uplift at Time 7.20 Sec.

time = 7.200 seconds

time = 7.200 seconds

Contact Surfaces for X (Longitudinal) and Y (Transversal) Directions and Combined for 1.4g

M-Teta Hysteretic Curves for Nonlinear Rocking XX and YY Responses for 0.7g and 1.4g Input

0.70g

1.40g

Base Uplift Moment-Rotation Curve for Linear SSI vs. Nonlinear SSI

2021 Copyright of Ghiocel Predictive Technologies, Inc., All Rights Reserved.

ISRS Computed for Linear SSI vs. Nonlinear Uplift SSI Analysis for Surface RB Complex

End of Part 5 Presentation Thank You!