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Abstract 
The paper discusses the key modeling aspects for solving efficiently and accurately complex, large-size 
computational stochastic mechanics problems. The paper focus is on stochastic response approximation 
techniques based on stochastic field models.  
 
1.0 Introduction 

 

 
There are two critical modeling aspects for solving 
accurately and efficiently complex, large-size 
computational stochastic mechanics problems:  

(i) Accurate Stochastic Field Approximation 
(SFA) models for complex physical system response 
behaviors given the statistical sample datasets.  
 
They ensure both an accurate global and local 
stochastic approximation of the system response 
based on the sample data space decomposition in a 
reduced-size state (or feature) space. The SFA 
models can be viewed as statistics-based reduced-
order models (ROM) in sample data space (the 
constituent elements are local or conditional data 
densities computed for partially overlapping 
stochastic partitions in data space).  

(ii) Fast Physics-based Stochastic Simulation 
(PSS) models given the physics of the problem 
(partial differential equation with computed solution 
via the FE code) and the system stochastic 
parameters and inputs.  
 
The PSS models are based on the original physical 
space decomposition in reduced-size subspaces (i) by 
projecting the solution in a subspace and/or (ii) by 
optimally partitioning or decomposing the physical 
domain is soft subdomains – these soft subdomains 
can be slightly-overlapping or highly-overlapping.  
 
The paper addresses in a relative detail the first 
modeling aspect. The reader is also suggested to see 
an earlier paper of the author (Ghiocel, 2001). The 
second modeling aspect related to the development 
of the PSS models is not discussed in herein.    Some  
 

 
information on this aspect is provided elsewhere 
(Ghiocel, 2004).   
 
Typically, the term stochastic process describes a 
dynamic random phenomenon, while the term 
stochastic field describes a random spatial variation. 
In the context of continuum mechanics problems, 
random spatial variations are represented by 
stochastic surfaces.  
 
A space-time stochastic process is a stochastic 
function having the time and the space as 
independent arguments. The term space-time 
stochastic process is synonym to the term time-
varying stochastic field. More generally, a stochastic 
function is the output of a complex physical 
stochastic system. Since in continuum mechanics a 
stochastic response is described by a stochastic 
surface in input space (for selected ranges of 
variability), the stochastic field term is a more 
appropriate term for engineering practice. The 
stochastic field term fits well with stochastic 
boundary value problems. Only the term of 
stochastic field is used hereafter.  
 
A stochastic field can be homogeneous or non-
homogeneous, isotropic or anisotropic depending if 
its statistics are invariant or variant to the axis 
translation and, respectively, invariant or variant to 
the axis rotation in the physical parameter space.  
 
From a theoretical point of view, a multivariate 
stochastic field is completely defined by its input-
output joint probability density function (JPDF).  
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2.0 Second-Order Stochastic Field Models 
 
In this section we discuss the covariance-based 
stochastic field approximation models. Basically, 
there are two competing stochastic approximation 
techniques using the covariance kernel factorization: 
(i) the Choleski decomposition technique and (ii) the 
Karhunen-Loeve (KL) expansion. They can be 
employed to simulate both static and dynamic 
stochastic responses. A notable property of these two 
stochastic field approximation techniques is that they 
can handle both real-valued and complex-valued 
covariance kernels. For simulating space-time 
processes (or time-varying stochastic fields), the two 
covariance-based techniques can be employed either 
in the time-space domain by decomposing the cross-
covariance kernel or in the complex frequency-
wavelength domain by decomposing the complex 
cross-spectral density kernel. For real-valued 
covariance kernels, the application of the KL 
expansion technique is equivalent to the application 
of the Proper Orthogonal Decomposition (POD 
expansion) and Principal Component Analysis (PCA 
expansion) techniques (Ghiocel, 2004).  
 
More generally, the Choleski decomposition and the 
KL expansion can be applied to any arbitrary square-
integrable, complex-valued stochastic field, ),(u θx . 
Since the covariance kernel of the complex-valued 
stochastic field )],'(u),,(u[Cov θθ xx is a Hermitian 
kernel, it can be factorized using either Choleski or 
KL decomposition. An important practicality aspect 
of the above covariance-based simulation techniques 
is that they can be easily applied in conjunction with 
the inverse marginal probability transformation to 
simulate non-Gaussian (translation) stochastic fields, 
either static or dynamic. If the KL expansion is used, 
the covariance function is expanded in the following 
eigenseries:     

∑
∞

=
ΦΦλ=θθ

0n
nnn )'()()],'(u),,(u[Cov xxxx

 
 (1)         

where λn and )(n xΦ  are the eigenvalue and the 
eigenvector of the covariance kernel computed by 
solving the integral equation:  
∫ Φ=Φθθ )'(d)()],'(u),,(u[Cov nn xxxxx   (2) 
As a result of covariance function being Hermitian, 
all its eigenvalues are real and the associated 
complex eigenfunctions that correspond to distinct 
eigenvalues are mutually orthogonal. Thus, they 
form a complete set spanning the stochastic space 
that contains the field u.  It can be shown that if this 

deterministic function set is used to represent the 
stochastic field, then the stochastic coefficients used 
in the expansion are also mutually orthogonal 
(uncorrelated in statistical sense).   
 
The KL series expansion has the general form 

)(z)(),(u ii

n

0i
i θΦλ=θ ∑

=
xx

                        
(3) 

where set }{zi  is the set of uncorrelated random 
variables that are computed by solving the stochastic 
integral: 

xx d ),(u )(1)(z
D

n
i

i ∫ θθΦ
λ

=θ    (4) 

The KL expansion is an optimal spectral 
representation with respect to the second-order 
statistics of the stochastic field. For many 
engineering applications on continuum mechanics, 
the KL expansion is fast mean-square convergent, 
i.e. only few expansion terms are needed to be 
included. This fast convergence is a key advantage of 
the KL expansion over the Choleski decomposition 
that makes the KL expansion (or POD, PCA) more 
attractive in engineering practice. This indicates that 
the transformed stochastic space obtained using the 
KL expansion has typically a highly reduced 
dimensionality when compared with the original 
stochastic space. In contrast, the Choleski 
decomposition preserves the original stochastic space 
dimensionality. For this reason, the KL expansion (or 
POD, PCA) has considered by some researchers to 
be a stochastic reduced-order model for representing 
complex spatial stochastic patterns.  
 
The KL expansion, in addition to space 
dimensionality reduction, also provides great insights 
on the stochastic field structure. The eigenvectors of 
the covariance matrix play in stochastic modeling a 
role similar to the vibration eigenvectors in structural 
dynamics; complex spatial variation patterns are 
decomposed in just a few dominant spatial variation 
mode shapes.  
 
Translation Non-Gaussian Fields 
From a mathematical point of view, a non-Gaussian 
stochastic field is completely defined by its JPDF. 
However, in practice, most often, non-Gaussian 
fields are defined incompletely by the second-order 
moments (the mean vector and the covariance 
matrix) and the marginal probability distributions. 
This incomplete definition looses all the information 
on the high-order statistical moments.  



46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Material Conference, Austin, TX, April 18-21, 2005 
 

PAPER AIAA-2005-2222 

__________________________________________________________________________________ 
Copyright 2005 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 

It should be noted that translation field model 
incorporate more information (about marginal PDFs) 
than a standard second-order stochastic field model 
that implicitly assumes Gaussian variations. 
 
These partially defined non-Gaussian fields form a 
special class of non-Gaussian fields that are called 
translation stochastic fields (Grigoriu, 1995, Ghiocel, 
2004). Thus, the translation fields are non-Gaussian 
fields defined by their second-order moments and 
their marginal distributions. Although the translation 
field models are not exact models of non-Gaussian 
stochastic fields they are of a great practicality. 
Typically, they capture quite accurately the non-
Gaussian variability aspects from marginal PDFs.  
 
The translation fields can be also mapped into 
Gaussian fields. To define a non-Gaussian 
(translation) stochastic field y with a given 
covariance matrix yyΣ  and a marginal distribution 
vector F, first its Gaussian image field x with a 
covariance matrix xxΣ  and marginal distribution 
vector Φ (x) needs to be determined. Then, the 
observed non-Gaussian field y is obtained by 
applying an inverse marginal probability distribution 
transformation of the non-Gaussian distribution F as 
follows:    

)(1 xFy Φ= −  = g(x)    (5)     
However, for simulating the Gaussian image field we 
need to define its covariance matrix xxΣ as a 
transform of the covariance matrix yyΣ  of the 
original non-Gaussian field. Between the elements of 
the scaled covariance matrix or correlation 
coefficient matrix of the original non-Gaussian field, 

yj,yiρ  and the elements of the scaled covariance or 
correlation coefficient of the Gaussian image, xj,xiρ  
there is the relation (Ghiocel, 2004): 
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where the bivariate Gaussian PDF is defined by 
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Using translation fields in conjunction with KL 
expansion, highly non-Gaussian variations can be 
accurately modeled.  

Gaussian Krigging 
A Krigging model is based upon the representation 
of the output of a system analysis as a stochastic 
field (Cressie, 1991). Usually, the Krigging 
approximation model consists of two additive 
components: 1) a simple linear regression of the data, 
f T (x) β, and 2) a stochastic variation model, z(x), of 
the random deviation vector from the linear model. 
The mean response, )(y x , at any feasible location, x, 
is then computed by 

)(y x  = f T (x) β + z(x).    (8) 
The first part of the model is a linear regression of 
the observations using a k-dimensional regressor,             
f(x)= }{ T

k21 )(f,...,f),(f xx and the optimal regression 
coefficients, β. The linear regression model is 
selected to remove any bias from the observations 
while minimizing the mean-square error (MSE) in 
their estimate.  
 
Due to its simplicity and good performance, the 
Gaussian spatial covariance function was considered. 
First, the correlation matrix, R, that has is computed. 
The covariance function is written in the form: 
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The correlation between each observation and any 
unobserved point defined is  
r(x) = { }T

n21 ),(R,),,(R),,(R xxxxxx K             (10) 
The optimal Krigging model is defined by the 
following relations: 

=)(y x f )()()( 1TT βFYRxrβx −+ −              (11) 
where f(x) is a vector of functions of the input, x, 
such as a constant or a polynomial function, F is a 
matrix of f(x) evaluated at each input point in the set, 
x, and: 

YRFFRFβ 1T11T )( −−−=                (12) 
Finally, the variance of the response is computed by: 
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3.0 High-Order Stochastic Field Models    
 
The concept of high-order stochastic fields is 
described pictorially in Figures 1 and 2. A high-order 
stochastic field model is based on the decomposition 
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of the JPDF of the joint input-output stochastic 
vector in elementary, local JPDF models. The 
resulting stochastic local JPDF expansion is capable 
of describing in detail very complex-pattern 
multivariate non-Gaussian stochastic fields. As 
shown in Figure 1, high-order stochastic field models 
can be implemented as two-layer stochastic neural-
network since they represent two-level hierarchical 
models.  Importantly, these two-layer stochastic nets 
based on local JPDF basis functions train much 
faster in comparison with the usual multi-layer 
preceptor (MLP) neural-networks that use sigmoidal 
nodal basis functions. Their train efficiency is due to 
the reduced number of layers, only two, and due to 
the selection of JPDF basis functions that ensure an 
efficient data modeling and by this a fast 
convergence of the overall JPDF expansion. It 
should be noted that if the correlation structure of 
local JPDF models is ignored, these local JPDF lose 
significantly their functionality. If the local 
correlation structure (clusters’ orientation) is 
neglected, a loss of accuracy is produced as shown in 
Figure 2. The radial-basis functions, such standard 
Gaussians, or other isotropic kernels ignore the local 
directional correlation structures. By this radial-basis 
function models lose accuracy in local modeling of 
stochastic response surface. A way to improve their 
results is to reduce their sizes drastically. This 
requires increase significantly the stochastic model 
complexity.  
 
If the local JPDF models are well-separated and 
assumed to be Gaussians, then overall JPDF is 
approximated by a piecewise Gaussian solution, i.e. 
the statistical nonlinear interrelationships are locally 
linearized. A way to improve the local stochastic 
surface approximation by improving its smoothing is 
to use a two-level hierarchical model with highly 
overlapping local Gaussian models, i.e. the stochastic 
field is not locally approximated by a Gaussian, 
although the overlapped local JPDF are still 
Gaussians, as shown in Figure 3. Figure 4 compares 
the radial-basis function network (RBFN) model 
(upper plots) with PPCA expansion model (lower 
plots) for a complex statistical dataset that describes 
a complex highly non-Gaussian stochastic 
variability. The bottom plot shows that the overall 
JPDF estimations for the two models. It can be noted 
that local PPCA field expansion model is much more 
accurate than radial-basis function network model. 
The local PPCA models can elongate along long the 
clusters (see right-side plots) in any arbitrary 

direction. The radial-basis functions do not have this 
flexibility. Thus, to model a long cluster a large 
number of overlapping radial-basis functions is 
needed. It is obvious that for a given approximation 
accuracy, the local PPCA expansion needs a much 
smaller number of local models than the radial-basis 
function model.  
 
This basic idea of the JPDF decomposition in 
elementary JPDF is not a new idea, but it is based on 
the classical Parzen mixture density estimator 

∫ αα= )(dp)(f)(g uu               (14) 
where p(α ) is an continuous distribution that plays 
the role of an occurrence probability weighting 
function (called mixing proportions in AI language) 
over the local model space. In a discrete form, the 
weighting function can be expressed for a number N 
of local JPDF models by 

)()(P)(p i

N

1i
i α−αδα=α ∑

=
            (15)         

in which )( iα−αδ is the Kronecker delta operator. 
Typically the parameter iα  are assumed or known 
and the discrete weighting parameters P( iα ) are the 
unknowns. The overall JPDF of the stochastic model 
can be computed in the discrete form by 

)(P)(g)(g ii

N

1i
αα= ∑

=
uu              (16) 

The parameters iα  can be represented by the 
statistics of the local JPDF models. If local 
Gaussians are used, then, the overall JPDF 
expression can be rewritten is a more specific form: 

iii

N

1i
P),,i (f)(g Σuuu ∑

=
=               (17) 

where ii ,Σu are the mean vector and covariance 
matrix of the local JPDF model i. Also, we have 

∑
=

==
N

1i
iii 1P,N/nP , and N1,i  for  ,0Pi => . The 

Gaussian assumption for the local JPDF models 
implies that the stochastic field is described only 
locally by a second-order stochastic field model. 
This assumption does not impose restrictions on the 
complexity of the correlation structure or the non-
Gaussianity of the stochastic field that is 
approximated. 
 
We use two types of high-order stochastic field 
model implementations:                 

(i) Cluster-Based Implementation: Using a 
reduced-size set of local JPDF models for which 
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each local model represents a cluster of points in 
space (a cluster is defined by group of data points 
that describes a specific pattern or feature within the 
dataset). 

(ii) Point-Based Implementation: Using a 
larger-size set of highly localized JPDF for which 
each local JPDF model represents a data point in 
space.  

Two-Level Hierarchical Stochastic Models 

The two-hierarchical models are based on the overall 
JPDF factorization using local JPDF models as 
follows: 

∑
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=
n

1i
ii )s(p)s,y(f),y(f xx             (18) 

where y is the stochastic output, x is the stochastic 
input vector and notation f is the notation for the 
probability densities. The argument s is associated 
with the local JPDF models. Index i is the number of 
the local JPDF model in the expansion.  
 
To compute the conditional output PDF we divide 
the overall JPDF by the input vector JPDF:     
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It should be noted that in the above equation, the 
global basis functions )(hi x  is computed as 
expansions in terms of the local basis functions 
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The conditional-mean response surface is computed 
by integrating the one-dimensional conditional PDF 
of the output over the entire stochastic input space: 
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The probability-level output surface can be 
computed by solving the integral equation 
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or, equivalently, by solving the alternate integral 
equation 
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The above two equivalent equations provides 
accurate estimates of probability-level response 
surfaces. They are applicable to any non-Gaussian 
stochastic response surface approximation problem. 
The second equation is sometime convenient to use 
if the local JPDF models of the output-input joint 
space are already available from a clustering 
analysis.  
 
It should be also noted that the overall JPDF, the 
conditional-mean and probability-level response 
surfaces can be computed using the same local basis 
functions, )(hi x . This indicates that by using the set 
of local density functions, )(hi x , we can build a 
accurate estimator of the overall JPDF, but also a 
accurate estimator of the conditional-mean surface. 
This remark is important since it brings a new 
perspective on the stochastic surface approximation 
problem; it links conceptually the local density 
function approaches with the local covariance 
function approaches. It links the higher-order 
stochastic field models with the Krigging models.  

Three-Level Hierarchical Stochastic Models 

In three-level hierarchical models, the local JPDF 
models are further expanded in a new set of JPDF 
models: 
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The mixing probability coefficient vector now 
becomes a mixing partition matrix, whose elements 
correspond to the conditional probabilities that i will 
belong to j basis function. 
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The conditional-mean surface can be computed 
directly by: 

[ ] )(yyE xx = =
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Fuzzy Weighted Average Schemes for 
Approximating Mean-Response 
The weighted average scheme for approximating the 
conditional-mean surface is based on the use of 
equation 21 in conjunction with a set of fuzzy 
singletons.  Two numerical implementations can be 
applied. The first implementation is called the fuzzy 
weighted average constant interpolation (WACI) 
model (similar in concept with a singleton model in 
the fuzzy logic theory) that is based on direct 
application by the equation 21. The second 
implementation is called fuzzy weighted average 
linear interpolation (WALI) model (similar in 
concept with the Tanaka-Sugeno model in fuzzy 
logic theory) and is based on by a modified equation 
by defining the cluster center points as a linear 
function of input x. The WALI model improves 
locally the stochastic interpolation quality by 
including the cluster orientation in the interpolation 
scheme that is an aspect neglected in the WACI 
model. It should be noted that WALI model can be 
applied only to the stochastic field approximations 
that use local JPDF models with full-covariance 
matrices (PPCA models).  
 
The WACI model computes the conditional mean-
surface by 
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The WALI model uses a smoothed estimation based 
on the cluster orientation (given by the correlation 
structure of the local JPDF). Instead of using data 
points iy  uses their linear estimation 

ii
T

ii b)(y += xax  determined by least-square 
regression or by directly using the cluster orientation 
hyperplane (principal direction of minimum 
variance).  
 

The WALI modified equation is: 
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Stochastic Clustering 
Assuming that the local JPDF components are 
multivariate Gaussians, their analytical expression is 
given by: 
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where x is the mean vector and a Σ is the local 
component (or cluster) covariance matrix.  
 
For a local component i the stochastic covariance 
matrix is computed by: 
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where the factor ikµ that is the conditional 
probability that data point k belongs to local 
Gaussian model i. It should be noted that in order to 
completely define a local Gaussian PDF model i, we 
need to compute the generalized Mahalanobis 
distance, ),(D ixx , using the analytical expression:   

( ) ( )i
1T

ii ),(D xxxxxx −−= ∑ −              (30) 
For an arbitrary orientation of the local Gaussian 
JPDF (clusters) covariance matrices are fully filled 
matrices. The principal directions of the covariance 
matrix define the zero correlation directions. The 
local Gaussian (cluster) model is elongated along the 
direction on minimum variance that is defined by the 
eigenvector of covariance matrix with the smallest 
eigenvalue.   
 
Fuzzy Clustering 
We also use alternate statistical approaches for 
describing the local clusters, such as possibilistic-
based or fuzzy-based approaches. As an alternate to 
the stochastic cluster covariance matrix, the fuzzy 
cluster covariance matrix can be used. The fuzzy 
cluster covariance iF  is defined by  
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Usually, the parameter m is equal to 2. The 
correspondent quantity of the conditional probability 

ikµ is replaced by its possibility-based or fuzzy-based 
version called the partition function defined by: 
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xx
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Fuzzy-based: 
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In the above equations, the generalized distance 
),(D ixx  has a modified form of the stochastic 

version: 
Possibility-based: ( )2kiki ),(D xxxx −=           (34) 

Fuzzy-based: ( ) ( ) ( )jij
T

jiji ,D xxAxxxx −−=   (35) 

where [ ] [ ] 1
j

P/1
jj Det −= FFA  and p is the input 

dimensionality.  
 
Fuzzy-based statistical clustering analysis techniques 
are FCM, Gustafson-Kessel and Subtractive 
clustering. These fuzzy clustering analysis 
techniques are powerful statistical analysis tools for 
building soft partitions in the sample data space.  
 
4.0 Comparative Results 
 
This section compares results that are obtained using 
different stochastic field modeling techniques for 
approximating 2D Nelson surface. A set of 100 
uniformly distributed random points were used to 
test the stochastic approximation models.  The 
Nelson surface was assumed (i) smooth surface 
without noise, and (ii) rough surface with a 10 
percent noise. The result comparison is shown in 
Figures 5 through 8.  
 
The best performer without and with noise is the 
three-level hierarchical model. For smooth surface, 
the popular Gaussian Krigging model is also 
accurate. However, for noisy surfaces, the Krigging 
approximation accuracy degrades considerably, thus 
that the surface approximation is much poorer that 
for smooth surfaces.    
 
 

 
5.0 Large-Size Computational Mechanics Models 
 
For large-size computational mechanics models that 
cannot fit in a single processor, distributed computer 
resources are needed. Figure 9 shows a parallel 
computational stochastic mechanics implementation 
strategy using multiple SMP computers. Both the 
sample data space and the physical domain of the 
problem can be decomposed in parallel data subsets 
and physical subdomains, respectively, as illustrated 
in the figure. The computer analyst’s preference is to 
use, as much as possible, the sample space 
decomposition in independent random samples that 
can be run in parallel very efficiently. However, if 
the computational mechanics model is too large to fit 
in a single processor, then the physical problem 
domain decomposition is required.    
 
6.0 Concluding Remarks 
 
The paper discusses the application of stochastic 
field models for approximating complex uncertain 
responses. The paper also addresses briefly the 
parallel computer implementation aspects for solving 
large-size stochastic mechanics problems. 
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Figure 1. Concept of High-Order Stochastic Fields          Figure 2. Local JPDF Structure for Bivariate Problem 
 

 
 
         Figure 3. Local Gaussian PPCA Models                    Figure 4. Local RBFN Model vs. PPCA Model  
 

         
a) Fuzzy Weighted Average Constant Interpolation      b) Fuzzy Weighted Average Linear Interpolation 
       Using 10 Local Gaussian JPDFs                  Using 10 Local Gaussian JPDFs 

 
Figure 5. Comparative Results for Smoothed Nelson Surface Using Fuzzy Weighted Average Techniques for 

Computing the Mean Response 
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      a) 50% Probability-Level Krigging – Smooth        b) 50% Probability-Level Krigging – 10% Noise  

 
Figure 6. Mean Response Surface Approximations Using Krigging Without and With 10% Noise 

 

          
         a) 95% Probability-Level Point-Based JPDF                   b) 95 % Probability-Level Krigging  

 
Figure 7. 95% Probability-Level Response Using Point-Based JPDF and Krigging Models With 10% Noise 

 

           
          a) 2L HM Using Point-based Local JPDF       b) Adaptive Network-based Fuzzy Inference System 
                (ANFIS) Using 10 Substractive Clusters  
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     c) MCMC-based Using 10 Local Gaussian JPDF.  d) 3L HM by Combining Point-based JPDF 
        Computed by Averaging 8 Simulated Samples        with 10 Local Gaussian JPDF  
  
Figure 8. Mean Response Surface Approximations Using Different Stochastic Field Approximation Techniques 

for Smoothed Nelson Surface 
 
        

 
 

Figure 9. Combined Parallelization in Computational Stochastic Mechanics Using Distributed Resources 
 
 

 


