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41.1 Introduction

 

This chapter presents two nondeterministic applications where hybrid architectures have been employed
to provide enhanced health-management reasoning for the detection, diagnosis, and prognosis of faults
(that are typically defined by some loss of system functionality).

The first application illustrates a prognostic health management (PHM) system capable of predicting
faults of air or ground vehicle engines under highly transient in-operation conditions. The system’s
predictions also include the associated confidence or risk levels. To adequately address the complex
problem of probabilistic in-operation diagnostics and prognostics, a hybrid stochastic-neuro-fuzzy infer-
ence system was developed

 

 

 

that is a combination of stochastic parametric and nonparametric modeling
techniques. This hybrid nondeterministic inference system, named StoFIS, is an integration of multivari-
ate stochastic space-time process models with adaptive network-based fuzzy inference system models
using clustering techniques [1]. StoFIS provides a hierarchical data-fusion modeling to maximize the
extracted information used for diagnostic–prognostic reasoning. StoFIS is used to quantify the fault risks
of an engine system at any given time and project their risk evolution in the future for risk-based
prognostics.
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The second nondeterministic application illustrates the application of discrete wavelet analysis in
conjunction with an adaptive network-based fuzzy inference system to provide automated fault detection
and diagnosis of rolling-element bearings. The proposed method involves the automatic extraction of
wavelet packets containing bearing-fault-related features from the discrete wavelet packet analysis rep-
resentation of machine vibrations. The resultant signal extracted by this technique is essentially an optimal
multiple-band-pass filter of the high-frequency bearing impact transients. The discrete wavelet packet
analysis multiple-band-pass filtering of the signal results in improved signal-to-noise ratios, with an
exceptional capacity to exclude contaminating sources of vibration.

 

41.2 Application 1: Vehicle Engine Prognostics Health 

 

Management (VEPHM)

 

Many VEPHM technologies over the last decade have focused on the ability to classify engine performance
faults as predicted by either gas-path-analysis models or maintenance personnel experience. Different
technologies implemented in the past have included various advanced techniques, such as neural-network
architectures, expert systems, fuzzy inference systems, empirical-based lifing algorithms, and more
recently, probabilistic or stochastic modeling techniques. Each of the implementations of these VEPHM
technologies brings benefits in terms of their capabilities for detection, diagnostics, and prognostics of
engine faults. None of these technologies provides a complete solution to the challenge of developing a
VEPHM system that is robust, reliable, and yet sensitive. The focus of more recent work in the field of
VEPHM has shifted to utilizing a combination of the aforementioned technologies, and providing
diagnostic reasoning based on data fusion. As greater knowledge of system behavior becomes available
with the increased data collection and dissemination, improved system integration will become feasible,
including the data and feature fusion of nondeterministic performance-based and vibration-based diag-
nostic reasoning.

At this time, there is a significant need to move to

 

 

 

in-operation-capable VEPHM systems that can be
used on a regular ongoing basis, thus providing a proactive approach rather than a reactive approach to
vehicle engine maintenance. In-operation engine diagnostics and prognostics offer critical information
on the engine state and functionality that is of key importance for quick, cost-effective decisions of the
vehicle pilot. Also, in-operation diagnostics offer extremely useful information to maintenance engineers
for preventive actions and, in some potentially catastrophic situations, to vehicle pilots for avoiding the
accidental loss of the vehicle.

The application presented in this section addresses the air VEPHM problem. The previous generation
of air VEPHM systems suffered from several shortcomings, which limited their use to ground test
environments. In some cases, air VEPHM systems assumed that the relationship between engine param-
eters and rotor operating speed (or corrected speed) could be represented by one-dimensional high-order
polynomial functions [2]. This polynomial fitting is suited for simple, well-controlled engine tests with
constant or slowly varying operational conditions, but not for a realistic engine environment. In a realistic
engine environment characterized by large and rapid variations in speed and engine inlet conditions, the
polynomial fitting provides a poor approximation for the in-operation engine problem. Another signif-
icant shortcoming of the previous generation of air VEPHM systems that needs to be addressed is the
limited prognostic capabilities available. This was partially due to the diagnostic reasoning of these systems
concentrating on the type of fault detected, with limited assessment of the fault severity. Prognostic
capabilities are thus usually limited to trending of nondimensional trend parameters taken under specific
operating conditions.

These issues are addressed by the development of stochastic models that treat the progression of engine
performance faults as movement into and along fault basins of attraction. The fault basins are based on
multivariate stochastic modeling of performance parameter deviations from normal operating condition
for given engine faults or combinations of faults.
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41.2.1 Stochastic VEPHM Tools Development

 

The development of a probabilistic framework for engine diagnostics and prognostics, based on param-
eter deviations from transient gas-path-analysis (GPA) engine models, provides the basis for in-operation
risk-based assessment of engine condition at any given time. By incorporating transient engine models,
appropriate feature extraction, data filtering, and probabilistic reasoning, an assessment of engine con-
dition in terms of risk can be ascertained given prior risk-association data (risk associated with given
fault type and severity).

To enable robust and sensitive system performance, regardless of whether the system is operating in a
ground test environment or a highly transient flight profile, nondeterministic GPA models were developed
using adaptive network-based fuzzy inference system (ANFIS) models. These ANFIS GPA models were
incorporated into the probabilistic reasoning model. This was in recognition of the fact that functional
variations are significantly greater than the random variations in performance parameters from their
normal operating conditions. The input parameters selected were based on a typical analytical GPA model,
with additional parameters (power lever angle) used as substitutes for parameters that are not currently
measured (fuel flow rate). The remaining error patterns described by uncertain parameter fluctuations
were substantially a result of random quantities, although some degree of functional variability remains
due to input factors not modeled and a limited size of the statistical database. A robust probabilistic
diagnostic-prognostic VEPHM system has to consider both the functional and random aspects of the fault
patterns. Three different classes of engine performance models were developed, namely the overall quasi-
stationary model (OQS), the overall transient model (OT), and the partial transient model (PT).

Three levels of data fusion are embedded into StoFIS. The data- and feature-level fusions are nonde-
terministic data-fusion processes, whereas the decision-level fusion method is deterministic. This proce-
dure enables in-operation variability and data uncertainty to be taken into account, and provides a robust
diagnostic-prognostic output of engine health. The three major components that form the basis for the
StoFIS development are outlined below.

 

41.2.1.1 Feature Vector Extraction

 

The first component of StoFIS is a data-level fusion procedure, where data from multiple sensors are
fused into ANFIS engine models prior to feature extraction. This fusion process utilizes data from a
sparse sensor array to track performance parameter deviations from normal operating conditions under
typical real-life environments. Basically, in StoFIS, engine behavior is nondeterministically modeled using
an ANFIS model, with the system design derived from a physics-based quasi-stationary GPA model. It
involves a two-step computational process; the initial membership functions (likelihood functions) and
fuzzy-logic rules are formed through subclustering, followed by a fine-tuning of the system with a loosely
coupled procedure using least squares and a backward-propagation neural network. The procedure
enables system adaptation to include 

 

engine–engine variability

 

, as well as the provision for 

 

quasi-stationary,

 

highly

 

 

 

transient,

 

 and 

 

partial-engine transient

 

 implementations of the models. Synergies derived from the
multiple modeling procedures enable more-sensitive fault detection under adverse conditions, increased
confidence in diagnostics, and improved multiple-fault discrimination.

 

41.2.1.2 Multivariate Reliability Analysis

 

The second component of StoFIS involves the reliability analysis using multivariate stochastic feature vectors
extracted from the ANFIS engine models. Multisensor stochastic feature vectors are used to characterize
the system and arrive at a diagnostic-prognostic output for each fault type. This is the most critical step in
the fusion process, with diagnostic and prognostic reasoning based on stochastic parameter deviations due
to off-specification conditions. This stochastic modeling has been termed as the stochastic fault basin, as it
models the stochastic deviations in multidimensional parameter space, with the development of faults
treated as progression into and along a fault basin (not a specific center point for a given severity level) of
attraction. Prognostics are based on the location with respect to and rate of progression toward a fault basin
of attraction. The outputs from the stochastic feature-level fusion are a reliability index (RI), used for
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diagnostics, and a reliability sensitivity index (RSI), used for prognostics. These two reliability indices can
be associated with the essential maintenance and preventive maintenance events, respectively. Separate
outputs are available from the three basic nondeterministic ANFIS GPA engine models.

 

41.2.1.3 Decision-Level Fusion

 

The third component of StoFIS is the decision-level fusion, where diagnostic outputs from separate
engine models, OQS, OT, and PT, are fused after diagnostic reasoning to enhance the confidence of the
final output. The purpose of this procedure is to take advantage of the synergies provided by using the
multiple engine models. The method employed is a heuristic fusion procedure based on a scoring method
that incorporates knowledge-based rules. The reliability indices computed using the three separate engine
models are weighted based on the fault-detection index and the fault-discrimination sensitivity index of
the engine models for given fault conditions. The combined effects of the data-level and decision-level
fusion technologies developed during this project have indicated improvements in the fault-diagnostic
resolution for in-operation conditions of between 100 and 1000%, depending on the location and type
of fault in the engine compared with corrected rotor-speed-based VEPHM systems. Figure 41.1 shows a
schematic illustration of the StoFIS architecture.

 

41.2.2 Nondeterministic Adaptive Network-Based Fuzzy Inference Models

 

The adaptive network-based fuzzy inference system, which is utilized in both of the studies illustrated
in this chapter, is a transformational model of integration where the final fuzzy inference system is
optimized via artificial neural-network training. ANFIS has the ability to either incorporate expert
knowledge or use subtractive clustering to form its initial rule base. In both cases, ANFIS maintains
system transparency while allowing tuning of the fuzzy inference system via neural training to ensure
satisfactory performance. The validity of the expert knowledge and the suitability of the input data chosen
can then be verified by examining the structure and the performance of the final fuzzy inference system.
This section describes the design and operation of an ANFIS [3].

The initial membership functions and rules for the fuzzy inference system can be designed by employ-
ing human expertise about the target system to be modeled. ANFIS can then refine the fuzzy if–then
rules and membership functions to describe the input/output behavior of a complex system.

If human expertise is not available, it is possible to intuitively set up reasonable membership functions
and then employ the neural training process to generate a set of fuzzy if–then rules that approximate a
desired data set. Sugeno-type fuzzy inference systems have been used in most adaptive techniques for
constructing fuzzy models because they are more compact and provide a more computationally efficient

 

FIGURE 41.1   

 

Illustration of StoFIS architecture.
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representation of data than the Mamdani or Tsukamato fuzzy systems. A typical fuzzy rule in a zero-
order Sugeno fuzzy system has the form:

If 

 

x

 

 is 

 

A

 

 and 

 

y

 

 is 

 

B

 

, then 

 

z

 

 

 

=

 

 

 

c

 

(41.1)

where 

 

A

 

 and 

 

B

 

 are fuzzy sets in the antecedent, and 

 

z

 

 is a crisply defined function in the consequent. It
is frequently the case that the singleton spike of the crisply defined consequent is completely sufficient
to cater to a given problem’s needs. If required, the more general first-order Sugeno can be employed by
setting the consequent to 

 

z

 

 

 

=

 

 

 

px 

 

+

 

 

 

qy

 

 

 

+

 

 

 

c

 

. Higher-order Sugeno systems add an unwarranted level of
complexity, with minimal remuneration. A zero-order Sugeno fuzzy inference system is used in this
investigation. The equivalent ANFIS architecture for a Sugeno fuzzy inference system is illustrated in
Figure 41.2.

The nodes in the 

 

input membership function layer

 

 are adaptive. Any appropriate membership functions
can be used to describe the input parameters. The outputs of this layer, and , are the
membership values of the premise where 

 

x

 

 and 

 

y

 

 are the node inputs, and 

 

A

 

i

 

 and 

 

B

 

i

 

 are the associated
fuzzy sets. The output of the fixed nodes in the 

 

rule layer

 

 represents the fuzzy strengths of each rule.
Either the product or minimum rules can be used to calculate the weighting function for the fuzzy
operator “AND” of a Sugeno fuzzy inference system.

Product: (41.2)

Minimum: (41.3)

The adaptive nodes in the 

 

output membership function layer

 

 calculate the weighted output of the
consequent parameters, as given by

 

W

 

i

 

Z

 

i

 

 

 

=

 

 

 

W

 

i

 

C

 

i

 

(41.4)

The 

 

weighted-sum output layer

 

 consists of a single fixed node. The weighted-sum output is the sum-
mation of the weighted output of the consequent parameters,

(41.5)

 

FIGURE 41.2   

 

ANFIS Sugeno fuzzy model.

input input
membership

function

output 
membership

function

weighted
sum

output

rule output

normalization node

x

y W2 Z2

W1 Z1

x y 

x y 

A1

A2
W1

W2

W1 Z1 + W2 Z2

W1 Z1 + W2 Z2

W1 + W2

W1 + W2

B1

B2

    
mAi

x( ) mBi
x( )

    
W x xi A Bi i

= ¥m m( ) ( )

  
W x xi A Bi i

= min{ ( ), ( )}m m

W Zi i

i

Â

 

1180_C41.fm  Page 5  Thursday, October 21, 2004  7:56 PM



 

41

 

-6

 

Engineering Design Reliability Handbook

 

The final 

 

output layer

 

 is the normalized weighted output given by

(41.6)

The 

 

normalization node

 

 connects the rule layer to the output layer in order to normalize the final
output. The normalization factor is calculated as the sum of all weight functions.

(41.7)

Although any feed-forward network can be used in an ANFIS, Jang and Sun [4] implemented a hybrid
learning algorithm that converges much faster than training that relies solely on a gradient-descent
method. During the forward pass, the node outputs advance until the output membership function layer,
where the consequent parameters are identified by the least-squares method. The backward pass uses a
back-propagation gradient-descent method to upgrade the premise parameters, based on the error signals
that propagate backward. Under the condition that the premise parameters are fixed, the consequent
parameters determined

 

 

 

are optimal. This reduces the dimension of the search space for the gradient-
descent algorithm, thus ensuring faster convergence. This hybrid learning system is used in the training
of the fuzzy inference systems used for both applications presented. A more-detailed explanation of
ANFIS can be found in the literature [3, 4].

 

41.2.3 Feature Vector of Engine Behavior

 

Figure 41.3 shows a sketch of the investigated turbofan jet engine including typically installed sensors. Figure
41.4 and Figure 41.5 show pressure variations as a function of the high-pressure shaft speed for testing data
and in-operation conditions, respectively. It is obvious from these figures that the pressure closely follows a
nonlinear relationship with shaft speed for slowly varying testing conditions. However, for in-operation
conditions, the pressure deviates from this nonlinear path due to highly transient conditions and significant
changes in the inlet conditions, namely inlet pressure, temperature, and mass flow. This means that using
deviations from a fitted polynomial regression line for diagnostics, as is commonly used in engine health-
monitoring applications based on test data, is not suited to in-operation conditions. In fact, a large stochastic

 

FIGURE 41.3   

 

Schematic of a typical sparse sensor array. (T-temperature, P-pressure, 
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variability projected on the pressure–speed plane in Figure 41.5 is apparent. This large variability is mostly
due to the transient variations induced by the vehicle’s pilot maneuvers. A key aspect for getting realistic
predictions for in-operation conditions is to separate the 

 

true statistical variabilities

 

 (random part) from the

 

functional variabilities

 

 introduced by engine transient behavior. For real, in-operation transient conditions,
the functional dependence between engine performance parameters becomes complex and highly nonlinear.
If these transient complex functional dependencies between multiple parameters are ignored, then the
statistical variability is overestimated and the computed fault risks are unreliable.

Physics-based, analytical GPA models only cater to quasi-stationary engine operation, which provides
limited ability to track engine parameters during the transitory operating conditions encountered during
typical operation of a vehicle. An alternative scheme capable of including the highly transient in-flight
conditions has been developed based on deviations from physics-based empirical GPA models of the
performance parameters. This leads to the formation of a stochastic engine GPA model, developed by
building and calibrating a generic analytical GPA model for a given engine and then tuning its stochastic
input–output using the nondeterministic ANFIS GPA model based on a statistical training data set from
typical operational data.

The ANFIS model was developed based on subtractive clustering using the modified mountain tech-
nique [5]. Subtractive clustering is a fast one-pass algorithm for estimating the number of clusters and
the cluster centers in a set of data and provides a powerful tool to form the initial fuzzy inference system
(FIS). Then, using a neural network (NN), the FIS was fine-tuned using least-squares training on the
forward-pass and back-propagation on the backward pass, resulting in a final FIS in the ANFIS model
that includes the NN-based correction. The final ANFIS GPA engine model provides an engine-specific
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physics-based empirical GPA model that is capable of accurately predicting normal-condition pressures
and temperatures at each section of the engine under transient operating conditions. The ANFIS GPA
models were developed and tested with nine different operating-condition spectra. Three operating
spectra were used for the NN training; three were used to check the fuzzy inference system for overtrain-
ing; and three were used to test the final system. The developed ANFIS models performed robustly for
all of the data sets considered, with only minor flight-profile dependencies. The ANFIS models provide
two functions: (1) an indicator of engine or sensor malfunction based on statistical deviations from
measured performance parameters; and (2) virtual sensors in the event that physical sensors are not
mounted at certain compartments in production models of an engine. Virtual sensors are normally used
to provide lifing estimates for the critical engine components.

Updating of ANFIS to cater to variations due to engine-to-engine variability for engines within a given
engine class can be accommodated by fine-tuning based on tests prior to in-operation implementation.
Alternatively, calibration can be performed based on in-operation data collected from a specific engine.
In this case, the vehicle’s pilot-to-pilot variability in addition to operation-to-operation variability can
be included. The deviations from the original ANFIS GPA models can be used to rate an engine’s
performance in relation to the standard engine characteristics for a given engine class. This provides an
important quality-control function for the engine-manufacturing process. The deviation from the cali-
brated ANFIS GPA models can be used to detect, diagnose, and provide prognosis of deterioration in
the performance of the specific engine.

 

41.2.4 Sparse Sensor Array Studies

 

Three key issues need to be resolved in the modeling of the engine performance: (1) maximization of
the useful information expressed in terms of system outputs available for diagnostic–prognostic reason-
ing; (2) incorporation of multiple engine faults for detection; and (3) isolation of their respective
contributions for diagnostic–prognostic purposes. Due to production engines currently having a very
limited number of onboard sensors, it was of interest to develop a sparse-sensor-array implementation
that could satisfy these three key issues. For example, we assume that a typical production engine can
be confined to an output parameter space of 

 

P

 

2

 

, 

 

T

 

2

 

, 

 

P

 

3

 

, 

 

T

 

6

 

, 

 

w

 

f

 

, and . In order to maximize the available
information, the three nondeterministic ANFIS GPA models, OQS, OT, and PT, were used.

The two overall engine models (OT and OQS) have a qualitatively different behavior. The OT model
eliminates feedback of downstream faults on the predicted performance parameters, while the OQS
model includes this feedback effect, thus providing additional parameters and more-complex interactions
for diagnostic reasoning. Detection of multiple cascaded engine faults is not easily achieved when limited
to overall engine models, especially when a downstream engine fault is shadowed by an upstream engine
fault. Thus a partial-engine model (PT) was also introduced. The functional basis for the three GPA
models is described in the following three subsections.

 

41.2.4.1 Overall Quasi-Stationary (OQS) Engine Model

 

The OQS engine model is similar to measuring performance parameters as a function of corrected high-
pressure rotor speed. It has the advantage of additional outputs compared with the transient models
above, in the form of mass-flow-rate and low-pressure shaft speed, however it does not perform as well
under highly transient operating conditions. The following relationship was assumed in the OQS model:
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w
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, PLA) (41.8)

Parameters 

 

P

 

n

 

 and 

 

T

 

n

 

 represent the compartment static pressure and temperature parameters indicated
in Figure 41.3. Significant functional errors were present due to the inability of the quasi-stationary model
to cater to the highly transient conditions encountered in operation. To reduce the function errors in
the quasi-stationary model, the available parameters were assessed for their ability to decrease the residual
errors. The power lever angle (PLA) was the only parameter that significantly reduced the model errors.
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41.2.4.2 Overall Transient (OT) Engine Model

 

The OT engine model takes transients into account by including the low-pressure shaft speed and flow
rates. The air mass flow is denoted by , and 

 

w

 

f

 

 and 

 

w

 

gg

 

 

 

denote the fan and gas-generator rotor speeds,
respectively. The following relationship was assumed in the OT model:

 

P

 

n

 

, 

 

T

 

n

 

 = f (P1, T1, , wf, wgg) (41.9)

Significant functional errors were present in the postcombustion chamber the OT GPA model-pre-
dicted temperatures. This error is due to the lack of a fuel flow-rate measurement, which currently cannot
be directly measured. Unlike the quasi-stationary model, PLA only provided a marginal reduction in the
residual errors, with the errors in some parameters increasing.

41.2.4.3 Partial-Engine Transient (PT) Model

The PT model uses the previous temperature and pressure available in the sensor array as inputs to the
ANFIS GPA model. This isolates contributions to deviations in the measured parameters from model
predictions due to faults at earlier stages of the engine. The benefits of the PT model are highly dependent
on the number of sensors installed on the engine. As the number of sensors is increased, the capability
of the PT model to distinguish between faults and to identify multiple faults in the engine is augmented
significantly. The PT models can be written in their functional form as:

Pn, Tn = f (Pn-p, Tn-q, , wf , wgg) (41.10)

where n-p and n-q represent the location of the previous sensor in the array. Although the PT models do
not provide a true compartmentalization of the turbofan engine, they still bring important complementary
information that adds to the overall engine models and can be used to enhance engine diagnostics.

Figure 41.6 and Figure 41.7 illustrate the mean deviations in the measured parameters for each of the
models for two different fault conditions of a turbofan engine. Two important benefits of the multiple-
model approach are illustrated in Figure 41.6. First, although the OQS model indicates a probable fault,
it would not provide as accurate an indicator of severity as the OT model due to the high scatter in

FIGURE 41.6   Sparse sensor array mean parameter deviations for 2% drop in HPC capacity.
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parameter deviations. In addition, the OQS model would not sufficiently discriminate between the
following faults: High Pressure Compressor (HPC) capacity drop, Low Pressure Compressor (LPC)
capacity/efficiency drop, and High Pressure Turbine (HPT)/Low Pressure Turbine (LPT) capacity
increase. This is due to the relatively small, normalized sensitivity indices of the OQS model for these
faults. In contrast, the OT and PT models clearly isolate the fault as being located in the HPC compart-
ment, although they are not as sensitive in distinguishing between an efficiency- and capacity-related
fault. A logical combination of these results allows the fault to be isolated as a HPC capacity drop.

The benefits of the multiple-model approach at detecting and discriminating multiple faults are
illustrated in Figure 41.7. In this example, the OT and PT models strongly support the supposition that
there is a drop in fan capacity, while the OQS model is less definitive due to the feedback from the HPT
efficiency drop confusing the issue. In this situation, the characteristic deviations for the OQS model
would lie somewhere between the drop in fan-capacity and HPT-efficiency basins of attraction in mul-
tidimensional parameter space. This could result in a reduction in confidence of the diagnostics based
on the OQS model due to potential confusion with other faults or combinations of faults.

The benefit of this is that the OQS model indicates that there is a high probability of faults existing
in more than one compartment of the engine. As the OT model is relatively insensitive to the HPT fault,
the OT model provides a more robust indicator of the drop in fan capacity, but it is unable to detect the
existence of a second fault. The PT model, on the other hand, is able to isolate the drop in fan capacity
and indicates either a drop in LPT/HPT efficiency or an increase in LPT/HPT capacity. Linking this
knowledge with the deviations in the OT and OQS model, it is possible to eliminate LP capacity increase
as a potential fault. Thus diagnostic reasoning after preliminary fusion of the three models could isolate
the primary fault as a drop in fan capacity, with a secondary fault located in the HPT compartment
(either efficiency drop or capacity increase).

41.2.5 Comparison of ANFIS Model Fault-Detection Sensitivity

Figure 41.8 illustrates the normalized sensitivity index of the three ANFIS models for fault detection under
typical transient in-operation conditions, based on the sparse sensor array illustrated in Figure 41.3. The
normalized sensitivity index is an indicator of each model’s sensitivity in detecting the presence of an engine
fault in a given compartment, relative to corrected rotor-speed-based measurements. The fault-sensitivity

FIGURE 41.7   Sparse sensor array mean parameter deviations due to a combined fault (2% drop in fan capacity
and a 1% drop in HPT efficiency).
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index is illustrated for changes in capacity and efficiency of each engine compartment, with the average
model sensitivity (no weighting given for the importance of fault location) displayed in the legend.

The sensitivity index (SI) is based on the Euclidean distance between the mean deviation vectors in
transformed space. The definition of SI for a given fault ( f ) condition is as follows:

(41.11)

where i represents the measurable parameters for fault detection (i.e., pressures, temperatures, rotor
speed, and flow rate), m(f)*

 is the mean parameter deviation in transformed space for a given fault
condition, and m(nc)*

 is the mean parameter deviation in transformed space for an engine in normal
condition (ª0).

The transformed space is based on the relative standard deviation of the normal-condition parameter
errors for the three ANFIS models. The transformation enables the mean parameter variations to be
considered with an equal weighting of importance, with the models using a common reference sref to
allow the performance of the models to be compared directly. The definitions of and sref are given as:

(41.12)

 (41.13)

The fault-detection capabilities of the models are dependent on both the type of fault and the number/
location of the onboard sensors. The OT and PT models are more sensitive that the OQS model for
detecting compressor faults, whereas the OQS model is the most sensitive for turbine faults. This indicates
the critical need for an in-operation VEPHM system to use intelligent fusion of the three models to take
advantage of the provided synergies.

FIGURE 41.8   Relative model sensitivity: OQS, OT, and PT.
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41.2.6 Multivariate Reliability Analysis Using Stochastic
Fault-Basin Concept

As discussed in the previous section, engine parameters measured on-line include pressures, temperatures,
and fuel flows in different compartments of an engine. The proposed stochastic fault-diagnostic–prog-
nostic procedure is illustrated in Figure 41.9 using a two-dimensional stochastic parameter space repre-
sentation [1, 2]. As shown in Figure 41.9 for the usage path 3, the engine condition at a given time can
be diagnosed by evaluating all the risks of potential engine faults. Figure 41.10 shows the engine perfor-
mance degradation from usage point P1 to usage point P2. This degradation is shown in the original
parameter space, X-space, and in transformed standard Gaussian space, U-space that is used typically for
reliability estimate calculations. Herein, the engine reliability is measured by the fault-reliability index,
which is similar in concept to the traditional reliability index used in structural reliability theory computed
in a transformed standard Gaussian parameter space.

To compute the fault-reliability index, the performance safety margin or the performance function
first needs to be defined. The performance safety margin in engine-parameter space was simply defined
by the stochastic distance between the measurement-variability ellipsoid (cluster) and the fault-variability
ellipsoid (cluster), as shown in Figure 41.11. Figure 41.11 shows that this distance can be defined in two
ways: (1) safety margin of Type A, a linear distance between the two multidimensional ellipsoids, and
(2) safety margin of Type B, an arc length defined by the curvilinear usage trajectory. The curvilinear

FIGURE 41.9   Engine performance degradation.

FIGURE 41.10   Standard space reliability model.
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safety margin B, in comparison with the approach using linear safety-margin A, ensures a more complete
compatibility between the measurement and the fault-complex patterns.

There are two important aspects related to stochastic fault diagnostics:

1. Single fault pattern: The single-fault-pattern modeling needs a continuous representation in the
parameter space. This stochastic representation is called herein the stochastic fault-basin (SFB)
concept. The fault-point location model is a truncated representation that can produce erroneous
diagnostics and prognostics. More appropriately, faults should be represented in the parameter
space as basins of attraction rather than point locations, as illustrated in Figure 41.11. Thus, the
reliability index has to be computed with respect to a continuous fault path from low-severity to
high-severity levels, and not with respect to a particular fault location.

2. Multiple-fault pattern: If multiple faults with different severities are simultaneously present, then
it is necessary to decompose the multivariate statistical measurement in the fault patterns before
defining the fault safety margins. The stochastic representation for multiple faults is called herein
the stochastic multiple-fault map (SMFM) concept. Figure 41.12 illustrates that directly using the
statistical measurement reference point M for reliability computations may hide the existence of
simultaneous faults. The safety margins computed for location M are quite large, and there is no
imminent fault detected. If the measurements in the two fault patterns are decomposed, the two
reference measurement points M1 and M2 are determined, with one reference point for each fault

FIGURE 41.11   Illustration of stochastic fault-basin concept.

  
FIGURE 41.12   Illustration of multiple-fault-basin map concept.
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(measurement fault component). If the reliability is computed using the two reference points M1
and M2 instead of the single measurement point M, the results are very different. In this last
situation, the simultaneous faults 1 and 2 are detected with different severities.

To diagnose the engine fault and provide prognostics for in-operation conditions, reliability indices
were computed for any point on the predicted trajectory within the fault basin of attraction. The reliability
index computed for current measurement location is used for fault diagnostics. Reliability indices with
computed locations on the future projected usage trajectory, from a predicted location to the fault
location, are used for prognostics. The associated fault diagnostic and prognostic probabilities, Pf , in the
multidimensional parameter space are approximated based on the computed reliability index, b

Pf ª F(-b) (41.14)

where F(◊) is the standard Gaussian cumulative distribution function.
To determine the usage rate in probabilistic terms (measurement location speed on the trajectory),

the reliability index gradients are required. Specifically, two reliability-index sensitivity measures are
introduced: a cumulative sensitivity index and an evolutionary sensitivity index. The cumulative reliability
sensitivity index (CRSI) is defined by the “global” nondimensional variation of the reliability index, b
(the relation between “failure probability,” here read as fault-diagnostic probability, and reliability index
is discussed on the next page) from initial state, at 0, to the final state, at t (over the interval [0, t]):

 (41.15)

The evolutionary reliability sensitivity index (ERSI) is defined by the “local” nondimensional variation
of the reliability index from an intermediary state, at time ti, to another intermediary state, at time ti + 1
(over the interval [ti, ti + 1])

 (41.16)

These two reliability-sensitivity indices indicate (in percentage) the changes in engine reliability. A zero
value indicates no safety (performance) degradation, while a positive value indicates a safety (performance)
degradation, and a negative value indicates a safety improvement. Robustness indices (RI) can be defined
as the inverse of sensitivity indices (SI). After model calibration, “red” alarms can be set to a lower bound
of reliability index of 3.70 (equivalent to fault probability of 0.0001). A CRSI of 0.5 or, equivalently, a
CRRI of 2.0, and an ERSI of 0.2 or, equivalently, an ERRI of 5.0, can be set as “yellow” alarms.

Figure 41.13 through Figure 41.16 show the computed reliability index and cumulative sensitivity
reliability index (CRSI) for a fan fault that produces a 3% efficiency drop. The reliability computations
are done using the dimensional variations of engine parameters. It should be noticed from these figures
that the reliability index value is zero and the CRSI value is unity for this fault type. The computed values
indicate that the fan fault defined by 3% efficiency has certainly occurred if the measurement and fault
location for a given overlap (probability of occurrence is 50%).

It is interesting to note — by comparing Figure 41.13 and Figure 41.14 with Figure 41.15 and
Figure 41.16 — the different qualitative behavior of the OQS and the OT models. The OQS GPA model
incorporates a significant “feedback” effect that is visible in the reliability estimate profile computed along
the engine profile (Fault 7 is at inlet, Fault 1 is at outlet). This is due to the fact that transients are not
captured well by this model, so that they add larger variability in the statistical deviations of engine
parameters.

In contrast, the OT GPA model shows as a “forward” model for which the reliability estimate profile
indicates a monotonic growth that shows a gradual increase of statistical deviations. Higher reliability
indices indicate that the statistical deviations are much larger than those that correspond to fault-severity
levels between 1 and 3% in the compartments other than the fan compartment. This can be a critical
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FIGURE 41.13   Computed reliability index using the OQS GPA model.

FIGURE 41.14   Reliability sensitivity index using the OQS GPA model.

FIGURE 41.15   Computed reliability index using the OT model.
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issue when an incipient fan fault exists, since this can project unreal, “phantom” faults in the other
compartments. This aspect can be fixed by using the OT model in conjunction with the PT model.

One important aspect that can reflect on the accuracy of a fault diagnostic–prognostic procedure is the
fact that statistics of different flight profiles are quite different, and they are also different than the statistics
of the overall ensemble of all flight-profile types (Table 41.1). In statistical terms, this indicates that the
ensemble of flight profiles (including all profile types) is not ergodic. Thus, the fault diagnostics–prognostics
have to be approached by operational spectrum-type statistical modeling.

41.2.7 Decision-Level Fusion

The decision-level fusion presented here is based on diagnostic–prognostic reasoning from the individual
models. The benefit of this approach is that it maintains separation of the models, thus providing a plug-
and-play scenario, where one, two, or all three modeling approaches could be used to assess the engine’s
health, depending on the engine’s requirements. The decision-level fusion uses the diagnostic outputs
from the separate engine models, (OQS, OT, PT) and combines them using a heuristic scoring approach
to enhance the confidence of the final output. The purpose of the fusion procedure is to take advantage
of the synergies provided by using the multiple engine models. For example, the PT model is good for
detecting multiple faults, although it is limited in its ability to discriminate between certain turbine faults;
the OT model is good for detecting and discriminating between compressor faults; and the OQS model
is good for detecting turbine faults.

The reliability-based indices from three separate engine models are weighted, based on the fault-
detection and fault-discrimination sensitivity indices of the engine models for given fault conditions, to
provide a joint reliability index (RI). The scoring method used employs the sensitivity and normalized
sensitivity indices for the three models. This applies weighting to the model outputs based on their fault-
detection and fault-discrimination capabilities. The scoring model implemented computes the sum

(41.17)

where Ci is the normalization constant.
An example based on the single-fault implementation of the fault-basin approach is presented in

Figure 41.17 through Figure 41.20 to illustrate the benefits of decision-level fusion in the diagnostic
process. In this case, the OQS model performs relatively consistently across the faults considered. How-
ever, the reliability indices are relatively low with the exception of HPT efficiency and LPT capacity faults.

FIGURE 41.16   Reliability sensitivity index using the OT model.
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TABLE 41.1 Mean and Standard Deviation of Aircraft Engine Parameters

Table of Mean Values

Profile Type P2 P3 P4 P5 P6 T2 T3 T4 T5 T6

All Types 0.000 0.000 -0.032 0.024 0.024 -0.048 0.720 -0.162 0.000 -0.141
Type A -0.003 0.046 -0.009 0.012 0.012 -0.038 0.299 -1.217 -0.955 -0.672
Type B 0.002 -0.017 -0.015 0.010 0.010 -0.054 0.604 -1.873 -1.494 -1.484
Type C -0.001 -0.054 -0.050 0.015 0.015 -0.072 1.100 -0.283 -0.126 -0.159
Type D 0.005 0.091 0.008 0.046 0.046 0.035 0.660 -0.131 0.053 0.700
Type E 0.005 -0.522 -0.057 0.074 0.074 -0.082 0.607 0.783 0.940 0.792
Type F 0.005 0.095 0.044 0.042 0.042 -0.043 0.975 -0.189 0.025 -0.605
Type G 0.005 -0.181 -0.227 0.007 0.007 -0.145 0.847 2.561 2.271 1.218
Type H 0.000 0.019 -0.016 0.031 0.031 -0.026 0.795 0.189 0.299 -0.113
Type 1 -0.009 -0.024 -0.017 0.005 0.005 -0.049 0.566 -0.369 -0.153 -0.299
Maximum 0.005 0.095 0.044 0.074 0.074 0.035 1.100 2.561 2.271 1.218
Minimum -0.009 -0.522 -0.227 0.005 0.005 -0.145 0.299 -1.873 -1.494 -1.484
Mean 0.001 -0.061 -0.038 0.027 0.027 -0.053 0.717 -0.059 0.096 -0.069
STD 0.005 0.192 0.077 0.023 0.023 0.048 0.240 1.247 1.074 0.844

Table of Standard Deviations

Profile Type P2 P3 P4 P5 P6 T2 T3 T4 T5 T6

All Types 0.054 0.406 0.369 0.129 0.129 0.468 1.481 6.367 5.290 4.854
Type A 0.060 0.237 0.259 0.099 0.099 0.473 0.931 7.198 5.874 4.885
Type B 0.041 0.260 0.242 0.083 0.083 0.354 1.114 6.181 5.032 4.995
Type C 0.047 0.312 0.289 0.104 0.104 0.425 1.640 6.072 5.033 4.474
Type D 0.066 0.383 0.336 0.132 0.132 0.507 1.531 5.879 4.768 4.837
Type E 0.047 0.298 0.326 0.090 0.090 0.776 1.659 7.775 6.747 5.251
Type F 0.046 0.329 0.292 0.103 0.103 0.353 1.591 5.075 4.501 4.362
Type G 0.063 0.703 0.627 0.194 0.194 0.624 1.642 6.855 5.649 5.515
Type H 0.055 0.408 0.395 0.140 0.140 0.418 1.525 5.798 4.864 4.411
Type I 0.054 0.450 0.388 0.155 0.155 0.379 1.496 6.307 5.232 4.869
Maximum 0.066 0.703 0.627 0.194 0.194 0.776 1.659 7.775 6.747 5.515
Minimum 0.041 0.237 0.242 0.083 0.083 0.353 0.931 5.075 4.501 4.362
Mean 0.053 0.376 0.351 0.122 0.122 0.479 1.459 6.349 5.300 4.844
STD 0.009 0.141 0.116 0.036 0.036 0.141 0.258 0.811 0.690 0.387

FIGURE 41.17   OQS reliability indices LPT 2% capacity increase.
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FIGURE 41.18   OT reliability indices LPT 2% capacity increase.

FIGURE 41.19   PT reliability indices LPT 2% capacity increase.

FIGURE 41.20   Fused reliability indices LPT 2% capacity increase.
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The OT model provides additional evidence against a Fan/LPC fault; however, it is unable to clearly
isolate the severity of the fault, and there is potential for false detection of an HPT capacity or an LPT
efficiency fault. The PT model clearly eliminates the fan/compressor sections as a source of the fault.
However, it has difficulties discriminating between the source of the turbine fault and its severity. In this
case, the fused reliability indices provide clear advantages, with the source of the fault identified as
resulting from a 2% increase in the LPT capacity. There is still a small probability of false detection of a
1% HPT capacity increase. Nevertheless, the fused reliability indices perform significantly better than
the individual models, both at fault diagnosis and determination of the fault severity. 

Embedded into StoFIS are three component technologies. The first is the feature vector extraction
(data-level fusion), where data from multiple sensors are fused into the nondeterministic ANFIS GPA
engine models prior to feature extraction. The second is multivariate stochastic analysis of the extracted
feature vectors (feature-level fusion), where parameter deviations from the ANFIS models are used to
characterize the system and arrive at a diagnostic–prognostic output. The third is decision-level fusion,
where diagnostic outputs from separate nondeterministic ANFIS GPA engine models are fused after
diagnostic reasoning to enhance the confidence of the final output. The benefits of the three component
technologies of StoFIS are described in Table 41.2 through Table 41.4.

41.3 Application 2: DWPA Multiple-Band-Pass Demodulation 
and Automated Diagnostics

Rolling-element bearings are the most common cause of small machinery failure, and overall vibration-
level changes are virtually undetectable in the early stages of deterioration. However, due to the charac-
teristics of rolling-element bearing faults, vibration analysis techniques have proven to be an effective
tool for the detection and diagnosis of incipient faults. The demodulated spectrum is the most common
technique used for the detection of localized bearing faults. However, for low-speed rolling-element
bearings, demodulation can be unreliable for the detection and diagnosis of faults [6]. Difficulties include
spectral smearing due to speed fluctuations and skidding of rolling elements, poor performance under

TABLE 41.2 Benefits of Feature Vector Extraction (ANFIS)

Category of Benefit General Benefit Operational Advantages

Feature extraction Converts data into useable features that describe
the state of the engine

Provides deviations from normal 
operating conditions

Robust operational 
performance

In the event of a reduced sensor array (one or 
more nonoperational sensors), the engine 
models still extract features. Loss of output 
sensor results in reduced dimensionality of 
feature space. Loss of input sensor results in a 
reduction of model performance

Allows continued operation despite 
reduced sensor array (input or output)

Engine–engine 
variability

Models can be readily tuned to fit a specific 
engine, based on initial generic ANFIS models 
for a given engine class

More accurate model of a specific 
engine enables assessment of engine 
performance relative to fleet

In-flight 
capabilities

Transient engine models extend the capabilities 
of air VEHM systems to be a true flight-capable 
system. Quasi-stationary models are improved 
about 40% through the inclusion of PLA

More up-to-date information regarding 
engine condition means less reliance on 
ground-based testing, leading to a 
reduction in maintenance costs

Improved detection Increased sensitivity index of engine models 
results in earlier and more confident fault 
detection

Earlier detection of fault onset

Improved diagnosis Increased fault discrimination of the engine 
models results in improved diagnostic output

Accuracy of fault diagnostics enables 
maintenance and parts to be planned 
prior to servicing
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high levels of noise, and difficulties in identifying and extracting the regions of bearing resonance. This
section presents a nondeterministic method to surmount these problems by combining several tech-
niques, including time-frequency decomposition, autoregressive (AR) stochastic process spectral analysis,
and nondeterministic ANFIS.

TABLE 41.3 Benefits of Multivariate Stochastic Analysis (Fault Basin)

Category of Benefit General Benefit Operational Advantages

Robust operational 
performance

Multidimensional mapping of parameter
deviations is robust in the event of the loss
of one or more parameters

Allows continued operation despite
reduced sensor array (input or output)

More-refined feature 
mapping

Extraction of stochastic features provides 
more-refined diagnostics and prognostics 
(e.g., two faults may have similar mean 
deviations, but their ellipsoid clusters may 
have significantly different correlation 
structure and thus orientation in space)

Earlier detection of anomalies and 
improved fault discrimination

Incorporates data 
uncertainty

Transformation into standard Gaussian space 
enables engine reliability to be assessed in 
terms of risk

Enables calculation of the risks of 
potential engine faults

Fault basins of attraction The reliability index is computed with respect 
to a continuous fault path from low-severity 
to high-severity levels and not with respect 
to a particular fault location

Improved robustness and more accurate 
indicator of fault severity; more-refined 
and accurate diagnostics/prognostics

Reliability-based 
reasoning

Diagnostic–prognostic output is provided in 
terms of reliability-based indices

Operational risks can be assessed, thus 
assisting in operational status and 
maintenance decisions for aircraft

Multiple fault detection Scanning of multiple fault deviations in 
multidimensional parameter space provides 
the ability to assess the risk of multiple faults

Improved robustness for multiple faults

Prognostic output Projected usage trajectories in 
multidimensional space are used to provide 
reliability-based prognostic output of fault 
degradation

Provides knowledge of the speed of 
progression for a given fault and assists 
with maintenance planning

TABLE 41.4 Benefits of Decision-Level Fusion

Category of Benefit General Benefit Operational Advantages

Robust operational 
performance

Model redundancy allows for the situation where 
one model is unable to adequately detect and 
diagnose a fault

In the event of a reduced sensor array (one or more 
nonoperational sensors), the most robust model 
can provide information while others are not 
performing adequately. Adaptive weighting can be 
used to reflect the relative performance of each of 
the models under adverse conditions or reduced 
sensor arrays

Facilitates the best possible diagnostic 
accuracy for each fault class

Enables optimum operation for a given 
array of sensors

Increased fault-detection
sensitivity

Sensitivity of fault detection is limited by the most 
sensitive model for a given fault condition. 
Depending on the fault location and type, this 
may be the OQS, OT, or PT model

Earlier detection of performance 
degradation

Improved system 
reliability

Two or three models can confirm the same engine
fault condition

Reduced probability of false detection

Reduced ambiguity Reduced probability of uncertainty in fault 
diagnosis, as each of the models provides different 
levels of fault discrimination from other fault 
sources

Increased plausibility in the fault type 
diagnosed and corresponding severity 
level
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The extraction of attenuated resonant vibrations due to impacts from localized faults in rolling-element
bearings is normally achieved by high- or band-pass filtering of the vibration signal. The main problem
with this approach is the difficulty in choosing an appropriate filter range of interest. This section presents
an alternative to traditional approaches, which enables the automation of the selection and the inclusion
of multiple frequency bands of interest.

The method for the extraction of high-frequency transients due to bearing impact resonance is achieved
at an optimal time-frequency resolution via best-basis discrete wavelet packet analysis (DWPA) represen-
tation, using the Daubechies-20 wavelet [7]. Selection of the frequency band or bands of interest is achieved
by analyzing the characteristics of each of the wavelet packets. The selection process is automated through
the use of an ANFIS model, thus removing the need for the analyst to manually identify the bands of interest.

The best-basis DWPA provides an optimal time-frequency decomposition of the signal and facilitates
the extraction and reconstruction of wavelet packets containing bearing fault-related information. For a
signal component composed of wide-band transients, high time resolution and low frequency resolution
would be required. On the other hand, a slowly varying narrow-band component of a signal requires
better frequency resolution, with its time resolution being less important. By obtaining the best-basis
DWPA of the signal prior to extraction of the wavelet packets of interest, two important objectives are
accomplished. The most important of these is the improved time resolution of the bearing transients
while maintaining isolation from other signal components. This improves the ability to resolve low-
amplitude transient features over the noise floor level. Second, subsequent processing required to extract
the relevant wavelet packets is substantially reduced. A detailed explanation of optimal time-frequency
decompositions as well as the choice mother wavelet can be found in the literature [7–9].

DWPA multiple-band-pass filtering surmounts the problem of extracting regions of bearing resonance
that are intertwined with continuous signals. Figure 41.21 illustrates how this method facilitates the
extraction of bearing-fault-related components from a signal while rejecting the unwanted harmonics.
The wavelet packets identified by the ANFIS model as containing bearing-fault-related features are
indicated. To visualize the rejection of wavelet packets containing unwanted continuous signal compo-
nents, the power spectral density is plotted along the vertical axis of the DWPA representation. Wavelet
packets that contained the harmonic peaks present in the power spectral density plot were rejected by
the adaptive network-based fuzzy inference system as containing excessive levels of signal contamination.

FIGURE 41.21   Selection and extraction of wavelet packets containing bearing-failure-related features. The extracted
wavelet packets are (3, 7), (4, 10), (6, 17), (6, 26), (6, 27), (6, 30), (6, 49), (6, 50), and (6, 53).
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This clearly demonstrates the ability of DWPA multiple-band-pass filtering to extract only the wavelet
packets composed predominantly of bearing-fault-related vibrations.

The ability of the multiple-band-pass technique to select more than a single band of interest enables
sections of the signal that contain predominantly noise or contaminating sources of vibration to be
excluded. This results in the extraction of a cleaner bearing-fault signal. Figure 41.22 shows a comparison
between high-pass, manually optimized band-pass filters, and DWPA multiple-band-pass filtering (with
and without noise reduction). Visual examination of the filtered signals indicates a significant decrease
in the contaminating effects of noise and other sources of vibration when the DWPA multiple-band-pass
filtering is applied. The DWPA reconstructed signal has a marginally lower level of sinusoidal contami-
nation than the best possible band-pass filter, and the bearing-fault-related transients are also stronger.
Hard threshold denoising almost eliminated the remaining polluting sources of vibration. This further
enhances the ability of DWPA multiple-band-pass enveloped spectra to accurately diagnose the location
and magnitude of bearing defects.

41.3.1 Implementation of ANFIS for Automatic Feature Extraction

In order to design and develop a robust and reliable nondeterministic identification of wavelet packets
of interest, an ANFIS was used to provide a statistical best-estimate based on the input parameters of
the model. The parameters chosen must enable the neuro-fuzzy network to make intelligent decisions
regarding the extraction of wavelet packets containing bearing-fault-related information. The input
parameters that were chosen for this process were kurtosis and the spectrum peak ratio (SPR).

Kurtosis is an effective measure of the spikiness of a signal. A high kurtosis level indicates that the
wavelet packet is impulsive in nature, as would be expected from a wavelet packet that contains bearing-
fault-related features. Kurtosis is defined as:

(41.18)

FIGURE 41.22   (a) High-pass filtered signal (order 40, [F > 500 Hz]); (b) FIR band-pass filter (order 40, [1500 Hz
< Fband-pass < 2500 Hz]); (c) reconstruction of extracted wavelet packets; (d) hard-threshold denoised reconstruction
of extracted wavelet packets.
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Sy is the standard deviation, and is the mean of data sample y . Kurtosis was chosen over other measures
of spikiness (crest factor, impulse factor, and shape factor) due to its statistically robust nature.

The spectrum peak ratio is defined as the sum of the peak values of the defect frequency and its
harmonics, divided by the average of the spectrum [10]. Shiroishi [10] used the spectrum peak ratio as
a trending parameter to indicate the presence of localized bearing defects, which was found to be more
robust than considering just the defect frequency.

(41.19)

Ph is the amplitude of the peak located at the defect frequency harmonic; Ai is the amplitude at any
frequency; and N is the number of points in the spectrum. In order to differentiate between wavelet
packets belonging to different classes of bearing faults, three autoregressive-based peak ratios are
employed: spectrum peak ratio inner (SPRI), spectrum peak ratio outer (SPRO), and spectrum peak
ratio rolling-element (SPRR). Calculation of the spectrum peak ratios was based on Yule-Walker autore-
gressive spectral estimates of the reconstructed wavelet packets using a model order of 125, equivalent
to one shaft revolution. Autoregressive spectral analysis was used in preference to the FFT (fast Fourier
transform), as this method has been shown to reduce the effect of spectral smearing and skidding for
low-speed rolling-element bearings [11].

Seeded faults in a low-speed test rig and mathematical models of bearings containing localized faults
[12] were used to construct a database of 2810 wavelet packets. These wavelet packets were individually
assessed as to whether they contained bearing-fault-related features by visual examination of their time
series and the envelope AR spectrum. They were then categorized for each fault class as containing fault-
related features (1), probably containing fault-related features (0.66), probably not containing fault-
related features (0.33), or not containing fault-related features (0). The wavelet packet data set included
444 containing inner-race fault-defect information, 221 containing rolling-element fault information,
and 162 containing outer-race fault information. The wavelet packets were split into three data sets: a
training data set of 1000 wavelet packets, a checking data set of 1000 wavelet packets, and a testing data
set of 810 wavelet packets.

Given the training and checking input/output data sets, the membership function parameters were
adjusted using a back-propagation algorithm in combination with a least-squares method. The checking
data were used to cross-validate and test the generalization capability of the fuzzy inference system. This
was achieved by testing how well the checking data fits the fuzzy inference system at each epoch of
training, and the final membership functions were associated with the training epoch that has a minimum
checking error. This was an important task, as it ensured that the tendency for the fuzzy inference system
to overfit the training data, especially for a large number of epochs, was avoided.

Two different membership function structures were compared in this study. The first consisted of
the kurtosis and spectrum peak ratio input amplitudes being transformed by two membership
functions (small and large), and the second was split into three membership functions (small,
medium, and large). The parameters for the initial input membership functions were determined by
expert knowledge of the system being modeled. Figure 41.23 illustrates a three-membership function
structure.

41.3.2 Performance of ANFIS Feature Extraction

A substantial reduction of the sum of squared errors for the testing data was apparent after training of the
neuro-fuzzy systems. This reduction is quantified in Table 41.5, with an average decrease in the sum of
squared errors of 34.9% for the neuro-fuzzy systems. The errors in the testing data are defined as the sum
of the squared differences between the output of the fuzzy inference system and the fault-categorization
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scheme based on visual inspection. In order to classify the individual wavelet packets as either containing
or not containing bearing-fault-related features, it is necessary to define a minimum crisp output value
that would indicate the presence of high-frequency bearing transients. The minimum crisp output value
was set as 0.5 for the correct classification rates presented in Table 41.6. The 3/3 neuro-fuzzy system had
a marginally better correct classification rate than the 2/2 neuro-fuzzy system.

41.3.3 Automated Fault Classification

A multiple-band fusion technique was implemented to provide an automated diagnostic tool based on
the DWPA feature-extraction process. This is similar in concept to the multisensor fusion used by
Loskiewicz and Uhrig [13], where multiple sensor data were fused in order to increase the confidence
factor for the final diagnosis compared with single-sensor diagnosis. The difference in this case is that
the data-fusion concerns multiple bands of interest for a single sensor, with the intention of enhancing
the confidence of correct diagnosis based on single-sensor vibration analysis.

The wavelet packet selection process using the nondeterministic ANFIS identified the existence and
fault class of bearing transients for individual wavelet packets. The output for each wavelet packet can
be viewed as the confidence factor relating to the existence of a particular bearing-fault class for the
wavelet packet being examined. Through fusion of the confidence factors for each wavelet packet that
indicated the presence of bearing-fault-related transients, a more confident assessment of the fault
classification can be ascertained, with the signals requiring further manual analysis for definitive classi-
fication easily identified. Manual classification can be achieved by visual examination of the demodulated
spectrum of the multiple-band-pass-filtered signal [14]. The use of multiple-band fusion of confidence
factors for fault classification reduces both the probabilities of missing or of incorrectly classifying a
stochastic faulty bearing.

Two parameters were used in the proposed fault-classification scheme: the average confidence level of
fault classification and the number of wavelet packets that contained bearing-fault-related features. The
average confidence level (ACL) was based on the average output from the nondeterministic ANFIS models

FIGURE 41.23   SPRI membership function (small, medium, and large).

TABLE 41.5 Testing Sum of the Squared Errors for the Initial 
and Final Fuzzy Systems

2/2 Fuzzy 3/3 Fuzzy

Initial Trained Initial Trained

IRF 0.1239 0.0806 0.1383 0.0829
REF 0.1380 0.0926 0.1639 0.0958
ORF 0.0501 0.0390 0.0591 0.0380

IRF-inner race fault; REF-rolling-element fault; ORF-outer race fault.
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for the wavelet packets that were identified as containing bearing-fault-related transients, and it was
calculated for each fault class (inner-race fault, rolling-element fault, and outer-race fault).

(41.20)

where n is the total number of wavelet packets that contain bearing-fault-related features. Table 41.7
shows typical outputs obtained from this process.

Box plots of the outputs from the fusion of the multiple-band-pass fuzzy confidence factors are
presented in Figure 41.24 for each of the fault classes. Box plots give you an idea of the distribution of
data, especially in terms of symmetry and scale. The limits of the box correspond to the first and the
third quartiles (Q1 and Q3), and the fences, respectively, to Q1 - 1.5(Q3-Q1) and Q3 + 1.5(Q3-Q1). The
minimum and maximum data points are printed with a black circle. The distinction between each of
the fault classes is evident. In the case of the combined inner-race/rolling-element fault class, the average
confidence level was lower for both fault classes than for an individual fault. There were two factors at
play that result in the reduced confidence levels. First, there was the interference due to the presence of
bearing transients from both fault classes in the extracted wavelet packets. This reduced the spectral peak
ratio for each fault class, and may have in turn reduced the fuzzy confidence factor indicating the presence
of a fault for the individual wavelet packets. The second factor was a consequence of variation in the
frequency and relative amplitude of the bearing impact transients, which was found to have a degree of
dependence on the impact location. Due to this, certain bands contained bearing transients of significantly
reduced amplitude from one of the fault classes, and in some cases contained transients from only one
fault class. Although this resulted in a reduction of the average confidence level after fusion of the outputs
from the ANFIS model, the existence of multiple faults was clearly indicated in each case.

Fault classification through fusion of multiple-band-pass fuzzy confidence factors resulted in a suc-
cessful classification rate of 100% for the signals examined, with 95% requiring no additional analysis
for verification of the fault classification. The vibration signals where the average confidence level was
considered inadequate for a positive diagnosis to be made where limited to the condition of combined
inner-race/rolling-element faults.

TABLE 41.6 Correct Classification Rate (%) for the
Neuro-Fuzzy Systems

2/2 Fuzzy 3/3 Fuzzy

Fault 97.98% 98.85%
Probably fault 83.53% 82.18%
Probably no fault 90.45% 87.52%
No fault 99.96% 99.96%

TABLE 41.7 Typical Outputs Obtained from Fusion of Multiple-Band-Pass Fuzzy Confidence Factors, 
and the Number of Wavelet Packets on Which the Calculations Were Based

Fault Type Number of Wavelet Packets ACL (IRF) ACL (REF) ACL (ORF)

IRF 6 98% 14% 0%
ORF 7 0% 0% 99%
REF 7 0% 93% 0%
IRF/REF 8 65% 85% 0%

ACL
ANFIS Output

= =Âi

n

n
1
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41.3.4 Multiple-Band-Pass Fault-Severity Index

Obtaining an accurate determination and trending of fault severity is an integral part of a successful
predictive maintenance program. Trending parameters can be used to indicate the general health of a
machine, or that of a specific machine element. In order for trending parameters to be effectual, they
must be sensitive enough to pick up changes in the condition of machine elements, yet not so sensitive
that small variations in operating conditions trigger an alarm. A bearing-specific trending parameter, the
wavelet peak index (WPI), based on the multiple-band-pass DWPA feature-extraction technique, is
presented for this purpose.

The wavelet peak index is defined as the peak level of the combined reconstructed wavelet packets that
contain bearing-fault-related features. The time-domain-based peak level was favored over trending of
spectral peaks, as this allowed the modulating effects of load to be ignored, thus allowing direct com-
parison between the severity of different types of faults (inner-race, outer-race, and rolling-element
faults). To test the performance of this trending parameter, a series of tests involving the introduction of
an artificial crack on the inner race of a low-speed cylindrical rolling-element bearing were performed,
simulating wear-out by deepening and widening the groove in several stages. The tests were conducted
at 20, 60, and 120 rpm. The proposed trending parameter was then compared with a number of commonly
used trending parameters for bearing-health determination, peak level, RMS (root mean square), crest
factor, and kurtosis.

Figure 41.25 displays the results of the trending parameters tested for each of the series of low-speed
artificial wear-out tests. For each series of tests, the wavelet peak index provided a clear and sensitive
trend of the deteriorating condition of the bearing as the fault width was increased. This was true at all
operating speeds, even for the smallest of the fault widths considered (0.38 mm). At operating speeds of
20 and 60 rpm, no discernible increase in either peak level or crest factor was noted for fault widths
below 0.67 mm, and RMS provided no indication of the deteriorating bearing condition for any of the
fault widths considered. The wavelet peak index is indisputably more sensitive to bearing transients of
low amplitudes than either the peak level or crest factor, with the wavelet peak index more closely coupled

FIGURE 41.24   Box plots of the outputs obtained from the fusion of multiple-band-pass fuzzy confidence factors
for each fault class considered.
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with the width of the bearing fault. Unlike the peak level, which is an overall indicator including vibration
components unrelated to the bearing fault, the index WPI is specific to bearing-related faults, as it is the
peak of the multiple-band-pass-filtered signal.

41.4 Concluding Remarks

Two nondeterministic hybrid architectures have been demonstrated to provide enhanced vehicle health-
management reasoning for the detection, diagnosis, and prognosis of faults. The nondeterministic hybrid
approaches have enabled more robust and comprehensive solutions to the challenges of developing vehicle
health-management systems capable of predicting faults with associated confidence or risk levels. The
utilization of advanced signal processing and multiple levels of data fusion to maximize the extracted
information used for diagnostic-prognostic reasoning have also been illustrated.

References

1. Ghiocel, D.M. and Altmann, J., A Hybrid Stochastic-Neuro-Fuzzy Model-Based System for In-Flight
Gas Turbine Engine Diagnostics, presented at 55th Machine Failure Prevention Technology Meeting,
Society for Machinery Prevention Technology, Virginia Beach, VA, 2001.

2. Ghiocel, D.M., A new perspective on health management using stochastic fault diagnostic and
prognostic models, Int. J. Adv. Manuf. Syst., 4 (1), PAGE, 2001.

3. Jang, J.-S.R., ANFIS: adaptive network-based fuzzy inference systems, IEEE Trans. Syst., Man, Cyber-
netics, 23 (3), 665–685, 1993.

4. Jang J.-S.R. and Sun C.-T., Neuro-fuzzy modelling and control, Proc. IEEE, 83 (3), 378–406, 1995.
5. Ghiocel, D.M. and Altmann, J. Conceptual and Tool Advances in Machinery Preventive Diagnos-

tics, presented at 56th Machine Failure Prevention Technology Meeting, Society for Machinery
Failure Prevention Technology, Virginia Beach, VA, 2002.

6. Mathew, J. et al., Incipient damage detection in low speed bearings using the demodulated resonance
technique, in Proceedings of International Tribology Conference, Monash University, Melbourne,
Australia, 1987, pp. 366–369.

7. Daubechies, I., The wavelet transform, time-frequency localisation and signal analysis, IEEE Trans.
Inf. Theory, 36 (5), 961–1005, 1990.

8. Misiti, M. et al., Wavelet Toolbox MATLAB, The MathWorks, Natick, MA, 1996.
9. Altmann, J. and Mathew J., Optimal configuration of the time-frequency representation of vibration

signals, Machine Condition Monitoring Res. Bull., 8, 13–24, 1996.
10. Shiroishi, J. et al., Bearing condition monitoring via vibration and acoustic emission measurements,

Mech. Syst. Signal Process., 11 (5), 693–705, 1997.
11. Mechefske, C., Fault detection and diagnosis in low-speed rolling-element bearings; 1: the use of

parametric spectra, Mech. Syst. Signal Process., 6, 297–307, 1992.

FIGURE 41.25   Trend parameters vs. crack size.
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