ACS SASSI Capabilities and Options Including Demo Sample Problems

Session 3: 1:00pm 3:00pm

Ghiocel Predictive Technologies Inc.

Dr. Dan M. Ghiocel

Email: <u>dan.ghiocel@ghiocel-tech.com</u> Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com

US NRC Technical Seminar

Rockville, MD November 15, 2018

Purpose:

Present a top-level overview of the ACS SASSI software application to the seismic SSI analysis, including simple demonstrative examples.

The overview includes brief descriptions of the special SSI modeling capabilities of Options A-AA, NON and PRO implemented in the support of the recent ASCE 4-16 standard recommendations and the most recent USNRC requirements, including SMRs.

Content:

- 1. ACS SASSI SSI Analysis Options
- 2. Modular Configuration and SSI Module Input Descriptions
- 3. UI Commands and Macros for SSI Model Checking and Result Post-Processing Using Text Files
- 4. UI Commands for Fast Post-Processing of SSI Response Time Histories Using Full FE Model Binary Database
- 5. Option A-AA, ACS SASSI-ANSYS Interfacing, applicable to Multistep Nonlinear Analyses
- 6. Option NON, Nonlinear Structure Behavior for Concrete Structures
- 7. Option PRO, Probabilistic SRA and SSIA
- 8. Show Demos 1, 7, 13

1. ACS SASSI SSI Analysis Options

An Advanced Computational Software for Dynamic Soil-Structure Interaction Analysis on Personal Computers

ACS SASSI Framework Development

Present/Options A-AA, NON and PRO, Future/Options HAZ and FRAG

2018 ACS SASSI V3 Software IKTR10_650K

7

The ACS SASSI Version 3 IKTR10_650k was tested for 3D SSI models with up to 640,000 nodes and 33,500 interaction nodes on typical 512 GB RAM workstations running under MS Windows 10.

It is intentioned that the SSI model size limitation to 650,000 nodes to be relaxed from time to time in future as the MS Windows workstation RAM and HDD resources continue increase.

New WRITE Option "Extend Integer Fields" for SSI Models with 100,000 to 650,000 Nodes

8

Typical ACS SASSI SSI Model

2018 ACS SASSI V3 SSI Analysis Options

1) Main or Baseline Software. Include advance pre-post processing, nonlinear soil modeling, motion incoherency, others. Plus, includes seismic motion simulation and site response capabilities.

2) Option A-AA. Integration with ANSYS. The ANSYS structure FE models can be used directly for the 1st step of the overall SSI analysis (Option AA), and/or in the 2nd step for the detailed stress analysis using the SSI responses as input BCs (Option A)

3) **Option NON.** Nonlinear structure, applicable to concrete structures and base-isolation (per ASCE 4-16 Sections 3, 11,12)

4) **Option PRO**. Probabilistic SRA and SSI analyses (per ASCE 4-16 Sections 2 and 5)

2. Modular Configuration and SSI Module Input Descriptions

ACS SASSI SSI Modules (Main Software)

- 1. EQUAKE Generates Control Motion
- 2. **SOIL** Compute Equivalent Soil Properties and Free-Field Motions
- 3. **SITE** Compute Site Layering Behavior Under Different Wave Types
- 4. **POINT** Compute Soil Layering Flexibilities Under Point Loads
- 5. HOUSE Defines the Structure and Near-Field Soil and Incoherence
- 6. ANALYS Compute Impedances & Solves SSI Problem (ATF solution)
- 7. **MOTION** Computes Accelerations, RS in Structure/Near-Soil
- 8. **RELDISP** Computes Relative Displacements
- 9. STRESS Computes Stresses/Strains in Structure and Near-Soil
- 10. COMBIN Combine ANALYS Solutions with Different Frequencies

Auxiliary Programs:

COMB_XYZ_STRAIN applicable to 3D nonlinear soil site response or SSI analysis using iterative equivalent linear procedure. Combines three directional shear-strains for X, Y and Z inputs in the nonlinear soil solid elements at each SSI iteration.

COMB_XYZ_THD applicable to nonlinear structure SSI analysis using iterative equivalent linear procedure (*for Option NON*). Combines directional node displacements for nonlinear shell walls and spring elements at each SSI iteration.

File8-CP-Resp-Recovering

This auxiliary code recovers the slave nodes response of the ANSYS CP constraints for Option AA. It finds the master nodes response, copies them to the corresponding slave nodes, then creates new file8 for further processing, based on the input information.

BuildFile77 applicable to incoherent SSI analysis of deeply embedded structures, such as SMRs. Very complex, needs support!

ACS SASSI Modular Configuration

Simulation of Input Control Motion (EQUAKE)

Analysis Options	EQUAKE Spectrum Compatible
EQUAKE SOIL SITE POINT HOUSE FORCE ANALYS MOTION STRESS RE	to be Independent or Correlated
Spectrum Files	Spectrum File - NEWMHX.RSO'
Spectrum Input File >>	
Spectrum Output File >>	
Acceleration Output File >>	2
Optional Spectrum Files	
Accel. Record External Ac	
Acceleration Input File C:\SSI\Demo5\ACCELNS.ACC >> PSD File	
Number of Frequencies 8393 Correlation Initial Random SEED 0 1	
Damping value 0 2	C Time History File - m1x:acc
Total Duration	
Number Of SEEDs 0 Uses ph	nasing
Correlated from	real
Spectra Title recol	
Includes non-stationary correlation between X and Y components	C C 9,995
	15 19

EQUAKE Module Capabilities – Firm Soil Site

Site Response Via SHAKE Methodology (SOIL)

Computation of Equivalent Soil Properties

SOIL Includes SHAKE or DEEPSOIL Option

E	EQUAKE SOIL SITE POINT	HOUSE	FORCE	ANALYS	MOTION	STRESS	RELDISP	NONLINEAR	AFWRITE		
	Input Motion		Soil Profile				Stresses Strains				
	Number of Fourier Components	4096	Layer Nu	mber 1	1	▲ ▼	Compu	te Stresses			
· · · · · · · · · · · · · · · · · · ·	Time Step of Input Motion	0.005	Property	Property Number 2			Save St	Save Stress Time History			
	Number of Values	3000	Dynamic Soil Property			Compute Strains					
	Multiplication Factor	0	Sand								
	Max Value for Time History	0.1	Accelerations			Spectral Amplification Factor Save Spectral Amplification Factor Outcropping of Second Laver					
	Gravity Accel. (ft/s^2 or m/s^s)	32.2									
	(used for free-fixed analysis)	0	O No Co	mputation			Outcropping of First Laver				
	Input Direction	0	Compute Maximum				Second Layer Number 0				
	Control Point Laver	1	Compute Maximum_Time History			Frequency Step 0					
Nonlinear S	te Response		Outcro	opping			Title				
	time domain using		Response Spectrum Save Response Spectrum Outcropping Multiplier for			Fourier Spectrum Compute Fourier Spectrum Save to File					
in time dom								trum			
same theory											
		operties	Accelerat	ion of Grav	ity 1		Outcro	oping			
	Number of Iterations 8		Damping	Ratios			Nr. of Smo	othings	0		
	Equiv. Uniform / Max Strain 0.6		0.02,0.05	0.02,0.05		Nr. of Values to be Saved 0		0			
	Nentinear Soil										
	🗌 Nonlinear Time Domain		Bedrock In	terface		Curve fi	it Hyperbolic	Parameters			
	Subincrements per Timestep	0	Rigid	⊖ Vis	coelastic	Beta	0				
	Displacement Convergence Error	0	Damping Ty	/pe (1,2,3)	0	S exponent	t 0				
	Force Convergence Error	0	Mass Matrix	Mult.	0	Reference	Strain 0				
	Equilibrium Iterations	0	Stiff Matrix	Mult.	0	Viscosity	0				
							Ok	C	ancel 20		

Selection of Seismic Wave Environment (SITE)

Input for Computing Soil Flexibility Matrix (POINT)

Analysis Options	
EQUAKE SOIL SITE POINT HOUSE FORCE ANALYS MOTION ST Operation Mode Operation Operation	TRESS RELDISP AFWRITE
Number of Embedment Soil Layers 0 Point Load Central Zone Radius 13.8	POINT Module Compute Soil Layering Flexibility Matrix
	Radius for Transmitting Boundary for point load at soil layer interface. It depends on interaction node mesh.
	OK Cancel Help

Inputs for Coherent and Incoherent SSI (HOUSE)

HOUSE Module for Incoherent SSI

EQUAKE SOIL SITE POINT H	OUSE FORCE ANALYS MOTION STRESS RELDISP NONLINEAR AFWRITE
Operation Mode Solution O Data Check	Soil Motion Multiple Excitation Use Multiple Excitation Use Multiple Excitation
Dimension of Analysis	Coherence Parameter X Dir 0 First Foundation Node 0 Coherence Parameter Y Dir 0 Last Foundation Node 0
Flexible Volume Method Flexible Volume(FV) Fast Flexible Volume(FFV) Flexible Interface(FI) Acceleration of Gravity 32.2 Ground Elevation Non-Linear SSI Input Data	Coherence Parameter Z Dir 0 X Coord. of Control Point 0 Alpha Directionality Factor 0.50 Y Coord. of Control Point 0 Number of Embedded Layers 8 Z Coord. of Control Point 0 Time Step of Seismic Motion 0.005 Spectral Amplification Spectral Amplification Nr. of Fourier Components 16384 Image: Spectral Amplification Spectral Amplification Number of Incoh. Modes 0 0 Image: Spectral Amplification Image: Spectral Amplification
☐ Optimize Model Wave Passage ✓ Use Wave Passage Apparent Velocity for Line D 1.e+8	Print Mode Contributions Up to 50 stochastic wave field Angle Line D with X Axis 0 Unlagged Coherency Model 5
Motion Incoherency Simulation O Deterministic (Median) Incoherency I Stochastically Simulated Incoherency ANSYS Model Input Embedded	Input Seed Variables Input Horizontal Seed Number 73811 Vertical Seed Number 45892 Type Random Phase (Degrees) 180 Surface Number of Simulations 20
stic approach for incoherent S for different simulations. Rand	SI. Use different SEED om phase is always 180.
	Ok Cancel 24

HOUSE Incoherent SSI Capabilities

There are several plane-wave incoherency models (with wave passage effects):

- 1) 1986 Luco-Wong model (theoretical, unvalidated, geom anisotropic)
- 2) 1993 Abrahamson model for all sites and surface foundations
- 3) 2005 Abrahamson model for all sites and surface foundations
- 4) 2006 Abrahamson model for all sites and embedded foundations
- 5) 2007 Abrahamson model for hard-rock sites and all foundations (NRC)
- 6) 2007 Abrahamson model for soil sites and surface foundations
- 7) User-Defined, Site-Specific Plane-Wave Coherency Functions for X, Y and Z.

REMARKS:

- 1) Also includes *directional* Abrahamson or user-defined coherency models.
- For general, more complex situations, can include *nonuniform motion in horizontal* plane by both amplitude and phase changes at different interaction nodes;

Radial vs. Directional Motion Coherency Models

ANALYS Module Coherent & Incoherent SSI

EQUAKE SOIL SITE POIN	NT HOUSE	FORCE	ANALYS	MOTION	STRESS	RELDISP	NONLINEAR	AFWRITE		
EQUAKE SOIL SITE POIR Operation Mode Solution Data Check Type of Analysis Seismic Foundation Vibration Mode Of Analysis Initiation New Structure New Seismic Environment 	E POINT HOUSE FORCE ANALYS MOTION ST a Check Frequency Numbers Image: Take Frequency Numbers Image: Take Frequency Numbers from File1 / File9 Frequency Set Number 1 Control Motion Foundation Reference Point X-Coordinate of Control Point 0 Y-Coordinate of Control Point 0 Z-Coordinate of Control Point 0 Coordinate Transformation Angle 0 Imment O Coherent Incoherent				STRESS Mul Inpu First Last X Cu Y Cu Z Cu	RELDISP NONLINEAR AFWRITE Multiple Excitation Input Motion Number 1 Input Motion Number 1 • First Foundation Node 0 1 Last Foundation Node 0 1 X Coord. of Control Point 0 Y Coord. of Control Point 0 Z Coord. of Control Point 0				
New Dynamic Loading O Coherent Incoherent Wave Passage Effects Included No Impedance Calculations Free-Field Load Free-Field Motion Simultaneous Cases Delete Restart Files Save Restart Files Print Amplitude Only						npedances atrix 6X6				
Up to 50 stocha response simul single SSI anal (up to 150 FILE	astic SS ations i ysis run 8s)	il na i								
2018 Copyright of Gh	iocel Predict	ive Tech	nologies,	Inc., USNF	RC Prese	Ok entation, Se	cession 3, Nov	ancel 15, 2018		

MOTION New GUI Input

Analysis Options	
EQUAKE SOIL SITE POINT HOUSE FORCE ANALYS MOTIO	ON STRESS RELDISP AFWRITE
Operation Mode Type of Analysis Baseline Correction • Solution • Seismic • No Correction • Data Check • Foundation Vibration • With Correction • Output Control • Output Only Transfer Functions Incoherent SRSS Input • Save Complex Transfer Function • Interpolation Option • • Phase Adjustment • • Smoothing Parameter • • Output Only Transfer	Response Spectrum Data First Frequency 0.1 Last Frequency 100 Total Number of Freq. Steps 301 Damping Ratios 0.05 Acceleration Time History Data 4096
Save = 1; FILE13 is saved, if baseline correction is selected; Save = 2; FILE12 is saved, if needed	Time Step of Control Motion 0.005 Multiplication Factor 1 Max. Value for Time History 0 First Record 0 Last Record 0
5231,5244,5259,5302, 5834,5848,5894,5948, Add Edit	Title BE-EW-ACC002 File G:\KEPCO\Training_March-2015' Image: File Contains Pairs Time Step - Accel
Convert Time History to Response Spectrum Post Processing Option Save TF in all point Save ACC in all point Save RS in all point Save RS in all point Save Rotation for A	ns Restart for TF ints Restart for ACC its Restart for RS ANSYS V11.0
	OK Cancel Help

2018 Copyright of Ghiocel Predictive Technologies, Inc., USNRC Presentation, Session 3, Nov 15, 2018

28

Spline Interpolation Applied to SSI Simulations

Spline Interpolation Applied to Incoherent SSI Simulation Approach

30

Relative Displacements Computed Using Baseline Correction ("Approximate") and RELDISP ("Exact")

Computing Relative Displacements (RELDISP)

Analysis Options EQUAKE SOIL SITE POINT HOUSE FOR Reference Location and Direction Complex TF File Name Output Control Complex Directore Complex TE	RCE ANALYS MOTION STRESS RELDISP AFWRITE	
Acceleration Time History Data Nr. of Fourier Components 4096 Time Step of Control Motion 0.005 Multiplication Factor 0 Max. Value for Time History 0.1 First Record 1 Last Record 3000	Nodal Output Data Node Number X Y Z 245 X Y Z 286 X Image: Second Seco	RELDISP Module computes transfer functions, TFD files, and motions, THD files for relative displacements.
Title Newmark-Hall Spectrum File D:\ssi\NEWMHX.ACC Image: File Contains Pairs Time Step - Accel Post Processing Option Image: Save Relative Displacement in all nodes	Add Edit Delete	
	Saving Results, THD files, for Post-proce Restart is used for generating frames for de shape plots and animations	el Help

Computing Output Stresses (STRESS)

Analysis Options	- 1 - 1 - m	×
EQUAKE SOIL SITE POINT HOUSE	FORCE ANALYS MOTION ST	RESS RELDISP AFWRITE
Operation Mode Solution Data Check Output Control Auto Computation of Strains in Soil El. Save Stress Time Histories on File 15	Element Output Data Group Element List 2 1-18 Save stress TFU	Add Edit Delete
✓ Output Transfer Functions Skip Time History Steps Interpolation Option 0 Smoothing Option 0 Acceleration Time History Data	And TFI files	STRESS Module Computes Stresses/Strains Forces/Moments in Selected Structural or Near-Field Soil Elements
Nr. of Fourier Components 4096 Time Step of Control Motion 0.005 Frequency Set Number 1 Multiplication Factor 0 Max. Value for Time History 0.1	C Norce 2-Direction - Node I C Norce 3-Direction - Node I C Moment Direction - Node I C Moment 2-Direction - Node I C Moment 3-Direction - Node I C Moment 3-Direction - Node I C Moment Request	© Force 3-Direction - Node J © Moment 1-Direction - Node J © Moment 2-Direction - Node J © Moment 3-Direction - Node J
First Record 2 Last Record 3001 Title Newmark-Hall Spectrum File D:\ssi\NEWMHX.ACC Image: File Contains Pairs Time Step - Accel	Print Only Maximum Respons Print Maximum and Save Tim Post Processing Options Save Max Value Save Time History Save Time History	Includes 6 TF interpolation algorithms and optional TF smoothing.
		Saving Stress Results, THS for Post-processing. Restart is used for generating frames for contour plots and animations for stresses and soil pressures.

Save Inputs for SSI Analysis Run (AFWRITE)

ACS SASSI Model Input File Capabilities

ACS SASSI SSI Analysis Capabilities

ACS-SASSI User Interface

ACS SASSI Post Processing Capabilities

🔓 ACS-SASSI User Interface	
Model File Plot Modules	Options View Help
Model	> 🔰 🏝 🔎 🛣 🕲 🚍 🏄 💁 🗣 🔸 🧔 🍾 🛛 茶 茶
Cuts	¥ 8 8 ₹ ₹ ₩ \$
Spectrum TFU-TFI	
Time History	
Soil Layers	
Soil Properties	
Non Uniform Soil Field	
Process Animation	
Bubble	Plot model submodels
Vector	inpute and CCI responses
Contour	inputs, and 551 responses
Deformed Shape	

Transfer Function (TF), Response Spectra (RS) and Time History (TH) Text Files for Post-Processing

RS	Response s	pectra data f	iles generated by the mo	tion module					
	Naming Scl	aming Scheme for TFU, TFI, TFD, ACC Files							
	Characters	1-5	Node Number						
	Characters	6-9	Translation (TR) or Rota	ational (R) degree of fre	edom				
	Characters	10-11	Damping ratio number						
TFU	Uninterpola	ated accelera	ition transfer functions w	ritten by the motion mo	dule and stress transfer functions				
TFI	Interpolate	d acceleratio	n transfer functions writ	ten by the motion modu	le and stress transfer functions written by the stress module				
TFD	Displaceme	ent transfer f	unctions generated by th	e reldisp module					
THD	Displaceme	ent time histo	ory written by reldisp mo	dule					
ACC	Acceleratio	n time histor	y written by motion mod	dule					
	Naming Scl	Naming Scheme for Acceleration TFU, Acceleration TFI, TFD, THD, and ACC Files							
	Characters 1-5 Node Number								
	Characters	6-9	Translation (TR) or Rotational (R) degree of freedom						
тн	Soil time hi	Soil time history for layers							
	Naming Scheme								
	ACC*** Acceleration time history for soil layer ***			/er ***	i.e. ACC001.TH is the acceleration time history for soil layer 1				
	SN***	Strain time	history for soil layer ***		i.e. SN001.TH is the strain time history for soil layer 2				
	SS***	Stress time	history for soil layer ***		i.e. SS001.TH is the stress time history for soil layer 3				
THS	Stress time	history writt	en by stress module						
	Naming Scl	heme for TH	S, stress TFU, and Stress	TFI					
	etype_gnur	m_enum_coi	np		e.g. BEAMS_012_00001_FXI.THS				
		etype =	element type						
		gnum =	group number						
		enum =	element number						
		comp =	stress component						
Frames.txt			i de la construcción de la constru	Post processing frames	s for stress and motion				
ELEMENT_CENT	ER_ABS_MA	X_STRESSES	.тхт	List of maximum stress	es for each element				
STATIC_SOIL_PI	RESSURES.TX	Т		Defines additional soil	pressure (geological pressure) to be included in soil pressure frames				
SRSSTF.txt				SRSS option in motion					

3. UI Commands and Macros for Model Checking and Post-Processing

Useful UI Commands for Checking FE Models and Improving Numerical Condition, Section-Cuts

Commands for building SSI and SSSI models: MERGESOIL, EXCAV, EXTRACTEXCAV, INTGEN, FIXEDINT, HINGED, EXCSTRCHK

Improving the FEA model numerical condition and speed/storage: FIXROT, FIXSHELL, FIXSOLID, FIXSPRING

Section-Cut Commands: CUTVOL, SLICE, CSECT, CALCPAR, CALCSECTHIST, etc. (see Demo 8)

Create Nonlinear Models, PANELIZE, PANELGEN, SHEAR, BBCGEN,...

SSI Model Checking UI Commands

	Command	Action
1	EXCSTRCHK	Checks excavation nodes for potential errors
	FIXEDINT	Find Fixed Interaction Nodes
	FREESPRING	Find Free Spring Nodes
	HINGED	Check model for possible hinged connections
	KINT	Find K node that are interaction nodes
	USED	Check and fix Unused nodes

EXCSTRCHK Command

EXCSTRCHK

This command checks if the Excavation interior nodes are common with the Structure basement nodes. This will be incorrect from a SASSI modeling point of view. A list detailing the shared nodes will be printed to the command history. The number of entries in the list is controlled by the Check Options break message number.

This command does not change the active model in any way.

Useful UI Commands for SSI and SSSI Model Building and Combination

Command	Action
EXCAV	Create an Excavation volume for a model
MERGE	Merge 2 models
MERGEGROUP	Merge 2 groups together
MERGEPANEL	Merge a Panel Model to the Solids and beams of the original model
MERGESOIL	Merge a Structural Model With a Matching Soil
ROTATE	Rotate the model around a point
SOILMESH	Create a soil mesh for the active model
TRANSLATE	Translate all nodes a specified distance
WELD	Combine nodes that share the same location

Using ACS SASSI User Interface (UI) Macros. Few Examples...See also Demo 3

- Perform fast repeated UI operations easily
- Post-Process SSI results (SRSS, averaging, time superposition by algebraic summation, etc.)
- Identify missing frequencies based on ATF or STF results, and build list of new frequencies to be added
- Generate Backbone Curves for Nonlinear SSI Analysis
 (Option NON)
- Automate the running of SSI Analysis

4 4

Macro Basic Functions

- Macros are loaded into the UI with the LOADMACRO command
- Macros are called with the MACRO command
- Input arguments for a macro are written in the form \$n\$, where n is the number of the argument, i.e. \$1\$ is the first input argument, \$2\$ is the second, etc.
 - In the example below, the macro call would look like macro,srss,.\XDIR\00001TR_X01.rs,.\YDIR\00001TR_X01.rs,.\Z DIR\00001TR_X01.rs,.\SRSS\00001TR_X01_SRSS.rs
 - From this example, the first argument is the X-Direction .rs file, the second is the Y-Direction .rs file, the third is the Z-Direction .rs file, and the last argument is the file to save the computed

SRSS to. * Compute SRSS
READSPEC, \$1\$,1,1
READSPEC, \$2\$,1,2
READSPEC, \$3\$,1,3
SRSS, 4,1,2,3
WRITESPEC, \$4\$,4

Nested Macros for Efficient Post-Processing

Macros can be nested to easily perform repeated operations. This example calls the nesting macro to pass file name information to the macro performing the SRSS operation. The nesting macro is passed file name information from the top level .pre file, looping through nodes to build file names to pass to the nesting macro with the FOREACH command.

4

5

* Define Variables mdl,temp,<work folder>\Coherent\Post-Processing var,path,. loadvar,nodes,@Path[1]\Nodes.txt * Load Macros loadmacro,srss,SRSS-macro.pre loadmacro,nestSRSS,Nested-SRSS.pre * Combine Results foreach,nodes,macro,nestSRSS,@nodes[#],01,X,@path[1] Macro Calling SRSS Macro (Nested-SRSS.pre) * NEST SRSS macro,srss,\$4\$\XDIR\\$1\$TR_\$3\$\$2\$.rs,\$4\$\YDIR\\$1\$TR_\$3\$\$2\$.rs, \$4\$\ZDIR\\$1\$TR \$3\$\$2\$.rs.\$4\$\Combined\ISRS\\$1\$TR \$3\$\$2\$.RS Macro to Perform SRSS Calculation (SRSS-macro.pre) * SRSS MACRO READSPEC,\$1\$,1,1 READSPEC, \$2\$, 1, 2 READSPEC,\$3\$,1,3 SRSS.4.1.2.3 WRITESPEC.\$4\$.4

Top Level .pre File Calling Nesting Macro

Section-Cuts Capability Using ESTRESS Frames

The UI Section-Cut capability has two options:

1) Uses a single frame of stress data (single .ess frame file) to compute the section-cut forces and moments on a cross-section at a specific time step.

2) Uses a *multiple frames of stress data* (all .ess frame files) to compute the full time-history of the section-cut forces and moments.

Demo 8

Section-Cut Submodel Models

Section-Cut for Single ESTRESS Stress Frame

* Read element center stress frame READSTR, estress_02617.ess, C:\DEMOS\DEMO8\ESS_STRESS

*For the 1st section-cut in the SUBMODELER command line, type

CUTVOL,1,132.4

*The blank arguments to this command are interpreted as the respective *minimum or maximum extent of the building model geometry. This cut volume *is saved to cut #1.

CSECT,1,1,0,0,15.3,0,0,1

*This creates a cross-section model from cut #1 through point (0.0, 0.0, 15.3), *with a cross-section plane normal unit vector of (0.0, 0.0, 1.0). The cut cross-*section is saved to model #1

CALCPAR, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0" in the command SUBMODELER window to calculate the cross-section parameters, seismic forces and moments

Section-Cut for Time History ESTRESS Frames

Section-Cut Model

CALCSECTHIST Command Example

*

*Batch .pre input file of section cut for multiple frame data *

```
actm,0
*Replace Directory Path
inp,demo8.pre,C:\DEMO_PROBLEMS\DEMO8\
*
```

```
* Define structure component to be cut
slice, 1, 0.0, 0.0, -12.0317, 0.0, 0.0, 1.0
*
```

* Cut the selected structure component using cutting plane * Calculate the parameters on it, and output to given file Calcsecthist,C:\DEMO_PROBLEMS\DEMO8\estr_frame_files.lst,1,0.0,0.0,-12.0317,0.0,0.0,1.0,1.0,0.0,0.0,1,.005,C:\DEMO_PROBLEMS\DEMO8\frc_mmt _on_cut02.txt

* output cross sections for visualization with PREP (optional) cut2sub,1,1 actm,1 write,Slice.pre,C:\DEMO_PROBLEMS\DEMO8\

CALCSECTHIST Results

C:\DEMO_PROBLEMS\DEMO8\frc_mmt_on_cut02.txt file:

0.005 -343.777 12065.2 0.229168 -800746 -21965.1 581499 0.01 -268.056 11539.5 0.300395 -779248 -16700.6 600032 0.015 -189.851 10623.5 0.294853 -733816 -10990.5 593052 0.02 -114.229 9320.15 0.227868 -665089 -5282.46 558887 0.025 -44.3936 7645.78 0.144148 -573880 2.20757 497620 0.03 18.0423 5647.78 0.0908182 -461901 4514.26 411756 0.035 72.3351 3391.01 0.0894927 -331126 8011.35 305474 0.04 117.752 967.345 0.124164 -184604 10378.6 184558

1.97 -676.309 9226 0.149393 -698463 -42784.3 401711 1.975 -631.161 8753.78 0.143451 -677218 -40340.6 396997 1.98 -553.34 7862.11 0.158777 -627501 -35783.4 376102 1.985 -450.432 6584.62 0.16545 -550419 -29410.2 339107 1.99 -330.715 4981.56 0.133199 -448530 -21628.8 287164 1.995 -202.2 3116.14 0.0512961 -325035 -12940.6 221694 2 -72.0058 1058.89 -0.0630017 -184306 -3907.81 144578 2.005 53.7767 -1132.73 -0.172686 -30951.4 4886.85 57394.5

4. UI Commands for Fast Post-Processing of SSI Response Time Histories Using Compressed Binary Databases

MOTION Analysis Options

	Analysis Options										×	
[EQUAKE SOIL	SITE POINT	HOUSE	FORCE	ANALYS	MOTION	STRESS	RELDISP	NONLI	NEAR	AFWRITE	
	Operation Mode Solution Data Check	Type of Analy	sis Nibration	Base N W	line Correct o Correctior ith Correcti	Response Spectrum Data First Frequency 1 Last Frequency 8192						
	Output Control Output Only T Save Complex Save FILE 12 or FI	ransfer Functions Transfer Functions LE 13 0	Inc ; Int	oherent S erpolatior	SI Option	Input	Total Number of Freq. Steps 32 Damping Ratios					
	Total Duration to	1	Acceleration Time History Data Nr. of Fourier Components 8192									
	Nodal Output							p of Control	Motion	0.005		
	Node List	● X		z Ox	X O YY (ZZ	Multiplic Max Valu	ation Factor e for Time H	listory	1		
Save hiner	v dotobooc			ations	runction		First Reco	ord		5000		
For each in Binary DB	nput direction name will k	on the Bina be Modeln	ary DE ary DE	3 nam ACC	s. ne will .bin	be	Title ac File C:	c_X_8192 /test/tshell/ ontains Pairs	acc_X_819	92.acc]] el.	
	Convert Time His	> Ad tory to Response S Files History Files	ld pectrum	Edit Post I Sa Sa Sa Binar	Delete Processing (we TF in All we ACC in A we RS in All we Rotation y Output Op we Binary D	Dptions Points II Points Points for Ansys 11 ption atabase		Restart for T Restart for A Restart for F	IF ACC S	-p - Acc	E],	
								Ok	:	Ca	ncel	

RELDISP Analysis Options

Analysis (ptions											×	
EQUAK	SOIL	SITE	POINT	INT HOUSE FORCE ANALYS MOTION STRESS RELDISP NONLINEAR AFWRITE									
Referen	ce Locati	on and [Direction										
Comple	x TF File	Name	C:/test/ts	hell/00415	X.TFI								
Output	Control												
Save	Rel Disp	Comple	x TF										
Acceler	ation Tim	e Histor	y Data		Nodal Ou	utput Data							
Nr. of F	ourier Co	mponer	nts 819	92	Node N	lum X	Y Z XX	YY ZZ	2				
Time St	ep of Cor	ntrol Mo	tion 0.0	05	1	√	√ √						
Multipl May Va	cation Fa	ctor ne Histo											
First Re	cord	ine i liste	1	_		0	we him		habaaa		the er		
Last Re	ord		50	00		56		ary da	labase		o ine of	Duon	5
Title	icc_X_819	2				FC	or each	input	directio	on the Bir	hary DE	s nar	ne will be
File	C:/test/tsl	nell/acc_	X_8192.ac	c			odelna	me_I	R_X_I	HD.bin			
🗌 File	Contains	Pairs Tir	ne Step - /	Accel.	Ad	Id Mo	odelna	me_T	R_Y_T	HD.bin			
Post Pr	cessing (Options				— Mo	odelna	me_T	R_Z_T	HD.bin			
Save	Relative	Displace	ement in A	ll Nodes	R	estart For F	rame Genera	tion					
Save	Rotation	s tor AN	1542 011.0										
Binary I	isp. Opti	on											
	nary Binary												
OIHD	Binary												
									Ok	C	ancel		

STRESS Analysis Options

Analysis Options	×
EQUAKE SOIL SITE POINT HOUSE	FORCE ANALYS MOTION STRESS RELDISP NONLINEAR AFWRITE
Operation Mod Type of Analysis	Element Output Data
 Solution Seismic Data Check Foundation Vibration 	GroupElement ListOutput CodeAdd101-2800000000000Edit
Output Control Auto Computation of Strains in Soil El. Save Stress Time Histories Output Transfer Function Phase Adjustment Interpolation Option Smoothing Option	Components
Acceleration Time History Data Nr. of Fourier Components 8192 Time Step of Control Motion 0.005 Multiplication Factor 1 Max Value for Time History 0 First Record 1 Last Record 5000 Title acc_X_8192 File C:/test/tshell/acc_X_8192.acc	 Force QXZ Force QYZ Moment MXX Component Request No Request Print Only Maximum Print Maximum and Post Processing Option Save Max Value Save Time History Save Time History
Save Binary Database	Section Cut Options Save Time History Ok Cancel

SSI Response History Post-Processing Options

User Interface:

Binary Databases:

- Generate BDBs for each input direction; select flag for BDB
- Combine BDBs for three inputs XYZ using UI commands
- Use the XYZ combined BDB to extract frames at selected time steps or maximum values (text frame tables)
- UI commands are designed for extracting selected time histories from BDB and tables at given times or with maximum values

⁵⁷UI Extracting STRESS Maximum Element Outputs

LOADTHSDB,C:\ACSV300\DEMO_PROBLEMS\DEMO9\XYZ_Analysis\STRESS\Combined\THS\AB_SHEAR_NL_STRESS.BIN

Database read took 3.906000 Seconds

LOADVAR,elist,C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\element_output_list.txt

Variable Loaded Sucessfully from file

BINSTRTBL, 34, elist, 1, C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS_MAX.txt

Table File : C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS_MAX.txt written

Gr. Elem.		SXX	SYY	TXY	MXX	MYY	MXY			
34	1	0.0619	1.3769	1.7051	0.2896	0.2343	0.3228			
34	2	0.0092	1.6048	2.6930	0.2101	0.8928	0.1681			
34	3	0.1953	1.0696	2.6461	0.5233	0.8652	0.1771			
34	4	0.1861	0.7625	2.1855	0.2927	1.1031	0.1119			
34	5	0.0589	0.8005	4.2785	0.5619	1.8940	0.0472			
34	6	0.0849	0.7012	4.9323	0.8285	1.8190	0.1373			
34	7	0.0262	0.6604	3.4275	0.6116	0.2215	0.4655			
34	8	0.0329	0.4823	1.7195	0.2640	1.7506	0.5377			
34	9	0.0498	0.7906	1.7139	0.7083	1.3001	0.2326			
34	10	0.0864	0.5886	2.4700	0.5667	0.5384	0.1734			

⁵ UI Plot Nodal Contours Using Binary Databases

UI Processing for Node or Element Animation Frame Lists for ACC, THD and THS Histories

5

9

Plotting STRESS History of Max Element Outputs

INPUT FILE REACHED EOF, INPUT SWITCHED TO KEYBOARD

LOADTHSDB,C:\ACSV300\DEMO_PROBLEMS\DEMO9\XYZ_Analysis\STRESS\Combined\THS\AB_SHEAR_NL_STRESS.BIN

Database read took 7.110000 Seconds

LOADVAR,elist,C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\element_output_list.txt

Variable Loaded Sucessfully from file

MAXDBFRAME, THS, C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS\Combined\THS\Max_Frame_Contour

1-10649

Max Frame added user interface animation database

THSDBANI,C:\ACSV300\Demo_Problems\Demo9\XYZ_Analysis\STRESS\Combined\THS\All_Frame_Contour

l d	🔓 ACS-SAS	SI Us	er In	Load Frame Data	
Ν	Model File	Plot	Mc	Select From Database	
Model Cuts Spectrum TFL	J-TFI	>	+ A M ry	DescriptionAnimation DireTypeFraStress Max Frame forC:\ACSV300\DeEle1Stress Contours for ABC:\ACSV300\DeEle106Stress Max Frame forC:\ACSV300\DeEle1	500.00000 >=
Time History Soil Layers			**** TEN I ^E	Remove Animation Edit Description Animation Control Image: Control in the second seco	375.00000
Soil Properties Non Uniform Process Anim	s Soil Field		pe Il ****'c s	Frame Selection Start 1 Erd 10649 Stride 1	250.00000
Bubble Vector	aton			Ok Cancel	125.00000
Contour		>	1	Nodal	0.00000 <=
Deformed Sh	аре		[Element /	
					60

Post-Processing SSI Responses Using Binary Databases Described in Detail in Demo 13

* **Define Variable for Working Directory** VAR,PATH,C:\ACSV300\Demo_Problems\Demo13

* Combining Three-Direction Response RELDISP Displacement Binary Databases for Each Seismic Input

COMBDISPDIR,@PATH[1]\XDIR\ABShear_TR_X_thd.bin,@PATH[1]\XDIR\ABShear_TR_Y_thd.bin,@P ATH[1]\XDIR\ABShear_TR_Z_thd.bin,@PATH[1]\XDIR\ABShear_thd.bin COMBDISPDIR,@PATH[1]\YDIR\ABShear_TR_X_thd.bin,@PATH[1]\YDIR\ABShear_TR_Y_thd.bin,@P ATH[1]\YDIR\ABShear_TR_Z_thd.bin,@PATH[1]\YDIR\ABShear_thd.bin COMBDISPDIR,@PATH[1]\ZDIR\ABShear_TR_X_thd.bin,@PATH[1]\ZDIR\ABShear_TR_Y_thd.bin,@P ATH[1]\ZDIR\ABShear_TR_Z_thd.bin,@PATH[1]\ZDIR\ABShear_thd.bin

* Combining SSI Responses Computed for X, Y and Z Inputs Using Binary Databases for MOTION, RELDISP and STRESS

COMBACCDB,@PATH[1]\XDIR\ABShear_ACC.bin,@PATH[1]\YDIR\ABShear_ACC.bin,@PATH[1]\ZDI R\ABShear_ACC.bin,@PATH[1]\Combined\ABShear_ACC.bin,0 COMBDISPDB,@PATH[1]\XDIR\ABShear_thd.bin,@PATH[1]\YDIR\ABShear_thd.bin,@PATH[1]\ZDIR\A BShear_thd.bin,@PATH[1]\Combined\ABShear_thd.bin,0 COMBTHSDB,@PATH[1]\XDIR\ABShear_STRESS.bin,@PATH[1]\YDIR\ABShear_STRESS.bin,@PAT H[1]\ZDIR\ABShear_STRESS.bin,@PATH[1]\Combined\ABShear_STRESS.bin,0

* Loading Binary Databases into the ACS SASSI UI for Fast SSI Response History Post-Processing

LOADACCDB,@PATH[1]\Combined\ABShear_ACC.bin LOADDISPDB,@PATH[1]\Combined\ABShear_THD.bin LOADTHSDB,@PATH[1]\Combined\ABShear_STRESS.bin

Post-Processing SSI Responses Using Binary Databases Described in Detail in Demo 13

* Plotting and Saving Results as Text Files from Binary Databases

* Nodal Accelerations (MOTION Module) ACCDBANI,@PATH[1]\Combined\ACC,Demo 13 Acceleration Time History MAXDBFRAME,ACC,@PATH[1]\Combined\ACC_Max

* Nodal Relative Displacements (RELDISP Module) DISPDBANI,@PATH[1]\Combined\THD,Demo 13 Relative Displacement MAXDBFRAME,DISP,@PATH[1]\Combined\THD_Max

* Element Stresses/Forces (STRESS Module) THSDBANI,@PATH[1]\Combined\STRESS,Demo 13 Stress Contour MAXDBFRAME,THS,@PATH[1]\Combined\Stress_Max

* Saving Binary Database Results to Text Files VAR,OUTNODES,63,137,205,219,253,271 VAR,OUTELEM,1,2,3,4,5,6,7,8,9,10,11,12,13,14 A list of nodes or elements must be assigned to an ACS SASSI UI variable when saving specific nodes or elements to text files. These are not required when saving a frame containing all nodes or elements

The output direction is controlled by this argument, so 1 = X, 2 = Y, and 3 = Z

* Accelerations (MOTION Module) ACCDBTHFILE,OUTNODES, 1,@PATH[1]\COMBINED BINFRAMEOUT,ACC,-1,0,0,@PATH[1]\Combined BINFRAMEOUT,ACC,1000,0,0,@PATH[1]\Combined BINFRAMEOUT,ACC,5.5,0.005,0,@PATH[1]\Combined

* Displacement (RELDISP Module) DISPDBTHFILE,OUTNODES,1,@PATH[1]\COMBINED

* Stress (STRESS Module)

Use **ACC**, **DISP**, or **THS** for this argument in the BINFRAMEOUT command to save frames for acceleration, displacement, or stress,

respectively

The output group number and stress component is controlled by this arguments, respectively

THSDBTHFILE,19,OUTELEM,1,@PATH[1]\Combined BINSTRTBL,19,OUTELEM,-1,@PATH[1]\Combined\Group19_Max_Stress.txt BINSTRTBL,19,OUTELEM,1000,@PATH[1]\Combined\Group19_tstep_1000_Stress.txt 2018 Copyright of Ghiocel Predictive Technologies, Inc., USNRC Presentation, Session 3, Nov 15, 2018

Coordinate Transformation for Forces and Moments in Shell Elements – Details in Demo 14

To apply coordinate transformations to element forces and moments, the requested elements must first be added to a (section cut) <u>submodel</u> in the ACS SASSI UI.

This submodeling operation conveniently allows for multiple walls or floors to be stored independently without having to redefine any grouping currently present in the model, as well as plotted separately to visualize the elements selected to apply coordinate transformation to.

Coordinate Transformation Commands

For Planar Geometry - CTRVEC,10,1,0,@PATH[1],MAX For Cylindrical Geometry - CTRCCV,2,@PATH[1],MAX

Some Useful Commands for Selecting Elements te

CutAdd,<cut num>,<group num>,<elem 1>, ... <elem N> CutAdd,<cut num>,<group num>,RANGE,<elem start>,[elem end], [stride] CutVol,<cutnum>,[Xmin],[Xmax],[Ymin],[Ymax],[Zmin],[Zmax] SLICE,<cutnum>,<pointx>,<pointy>,<pointz>,<normalx>,<normaly>,<normalz>

Defines a vector for the X-axis of the coordinate system to transform to. CTRCCV does not require this argument, as it is calculated internally for the cylindrical surface

5. Option A-AA

ACS SASSI-ANSYS Interfacing

ACS SASSI-ANSYS Integration Capabilities (Options A and AA)

Two engineering analysis options in ACS SASSI:

i) **One Step analysis** using ACS SASSI for computing overall SSI responses of ACS SASSI or ANSYS FE model (Option AA)

ii) **Two Step analysis** using ACS SASSI in 1st step and ANSYS in 2nd step. The 2nd step uses SSI response as input BCs (Option A)

OPTION A: ACS SASSI-ANSYS Interface for SSI Analysis Using ANSYS Models

ACS SASSI-ANSYS interfacing provides useful analysis capabilities:

For structural stress analysis (Demo 5):

 - ANSYS Equivalent-Static Seismic SSI Analysis Using Refined FE Models (including refined mesh, element types including local nonlinearities, nonlinear materials, contact elements, etc.)
 - ANSYS Dynamic Seismic SSI Analysis Using More Refined FE Models (including refined mesh, element types including local nonlinearities, nonlinear materials, contact elements, etc.)

For soil pressure computation (approximate) (Demo 6): - ANSYS Equivalent-Static Seismic Soil Pressure Computation including Soil-Foundation Separation Effects

Option A for A Refined Seismic Stress Analysis (Demo 5)

ANSYS Refined Structural Model Using EREFINE command or ANSYS GUI (rank 1-6)

Demo 5

ANSYS Structural Model Automatically Converted From ACS SASSI Using PREP Module

Selected Critical Time Steps for Maximum Stresses To be Used for Equivalent Static Structural Analysis

SSI Solution Time Frames As Equivalent Static Loading at Critical Time Steps

EQS Relative Displacements - Linear (Welded)

Option A for Seismic Soil Pressure Analysis (Demo 6)

SURFACE SSI MODEL

Displacement and Acceleration Option SYY Component at t = 4.105 seconds

Flexible Base (w/ Displ. BC)

Figure 193: Case b) SYY Element Center Stresses for "Displacement and Acceleration" Option

Figure 194: Case b): SZZ Element Center Stresses for "Displacement and Acceleration" Option

UI Input Window for Option A

ANSYS Static Load Conv	erter			Х
- Data to Add From ACS	SASSI to the ANALYS r	nodel		
○ Displacement	○ Acceleration	Disp. and Accel.	◯ Disp. for Soil	Module
Use Multiple File List	Inputs			
SSI Model and Results Input				
Path	C:\SSI\SSIResult	s		
HOUSE Module Input	abshear.hou		<<	
Displacement Results	thdlist.txt	<<		Rotational Disp.
Trans. Acceleration Res	sults acclist.txt	<<	<<	Rotational Accel.
ANSYS Model and Data Input				
Path	C:\ANSYS\Results	;]	
Mass Data for Internal Mass Type Lumped Mass	Load (Ignore for Displa O Master Node Mas	ss Generate Mass Data	1	
For Lumped Mass				
Lumped Mass	•		~	
For Master Mass				
Master Node Mass	→		< <	
ANSYS Output File				
ADPL File	ANSYS_SSI_loads.inp		<<	
	Ok		Cancel	

OPTION AA: ACS SASSI-ANSYS Interface for SSI Analysis Using ANSYS Models (Demo 7)

OPTION AA uses directly ANSYS structural model for SSI analysis

Sequence of Steps:

- 1) Develop ANSYS *structural* FEA model with no modeling restrictions (any FE type, CP, CE, rigid links)
- 2) If embedded, develop also the ANSYS excavated soil FEA model
- 3) Using an ANSYS ADPL macro generate matrices K, M, C
- Using ACS SASSI UI read ANSYS model .cdb for structure and excavation to convert the ANSYS model geometry configuration to ACS SASSI for post-processing
- 5) Merge Structure and Excavation models using new UI. Add interaction nodes and AFWRITE the SSI model to produce HOUSE input.
- 6) Run SSI analysis using HOUSEFSA and ANALYSFSA

Demo 7

Steps for Running SSI analysis Using ANSYS Model

Using ANSYS with gen_kmc.mac APDL Macro

FOR STRUCTURE ANSYS Model:

At the ANSYS command line input gen_kmc,'.',0,'.'

APDL Macro produces the following files: coosk_r, cooski_r, coosm_r, coosmi_r, coosc_r, coosci_r, and Node2Equ_Stru.map

FOR EXCAVATION ANSYS Model:

At the ANSYS command line input gen_kmc,'.',1,'.'

APDL Macro produces the following files: cooek_r, cooeki_r, cooem_r, cooemi_r, cooec_r, cooeci_r, and Node2Equ_Excv.map

Using ANSYS with gen_kmc.mac APDL Macro

User Interface Procedure to Merge ANSYS Structure and Excavation Models for Option AA

It is assumed that the ground surface is at Z=0. and the FV method will be used

*Convert ANSYS Structure.cdb in Model 1 Actm,1 Convert, ansys, struct.cdb, 32.2 Etypegen,1 Actm,2 *Convert, ansys, Soil.cdb, 32.2* * Define excavation elements of type 2 Etypegen,2 * Create SSI model by combining Models 1 and 2 in Model 3 Actm,3 MergeSoil, 1, 2, 1, ., mappingfile.txt Groundelev, 0 Intgen, 1

ANSYS FE Types Compatible with Option AA

- •SOLID element types: SOLID45 and SOLID185;
- •SHELL element types: SHELL63 and SHELL181;
- •BEAM element types: BEAM44 and BEAM188;
- •PIPE element types: PIPE288;
- •COMBIN element types: COMBIN14;
- •Couple nodes (CP command) and Constraint equations (CE command)
- •Multipoint constraint element types: MPC184 Rigid Link and Rigid Beam
- Fluid element types: FLUID80 (legacy element). It may also work for FLUID30, but no V&V test problem was run for this. To be tested soon.
- MATRIX50 Super Element
 - Included in Option AA using ANSYS model
 - Converted to General Matrix Element for the ACS SASSI Model

REMARK: Not all keyopt or othere parameter values work!

Fluid Surface Acceleration at Center (Input 0.3g)

Water Displacement Response (Sloshing)

8

1

⁸ ANSYS Super Element (SE) Converted to ACS SASSI Using General Matrix Elements (GM)

Super Element Utility					
ANSYS MATRIX50 Super Element Operation					
Convert ANSYS SE Matrices to SASSI General Elements					
Assemble SE Matrices into ANSYS Main Structure Matrices (Option AA)					
SE Matrix Folder	D:\demo_xx\ansys_work				
Main Structure Matrix Folder					
Number of Super Elements	1				
General Matrix ID Start	1				
Element Group ID Start	4				
Input SE Files Names (.sub) One by One:					
	Add				
sldbox_gen Remove					
General Element Output Folder D:\demo_xx\sassi_work					
General Element Output File (.pre) ge_from_se					
Ok	Cancel				

ANSYS Super Element (SE) Using Option AA By Adding Main Model and SE Model Matrices

×

8

4

6. Option NON

Nonlinear Structure Behavior for Concrete Structures

Option NON Modeling of Hysteretic Behavior

8

6

Fast and accurate nonlinear SSI analyses at a small fraction of the runtime of a time domain nonlinear analysis, about 2-3 times linear SSI analysis runtime (about 5-6 iterations are sufficient).

Much more robust than nonlinear time integration approaches - similar opinion has also Prof. Kausel (Kausel and Assimaki, 2002)

ACS SASSI Nonlinear SSI Analysis Procedure

Nonlinear SSI Analysis computational steps:

- For the initial iteration, perform a linear SSI analysis using the elastic properties for the selected shearwall panels
- Compute concrete shearwall panel behavior in time domain that is used to calibrate the local panel hysteretic models associated to each nonlinear shearwall panel in complex frequency
- Perform a new SSI analysis iteration using a fast SSI reanalysis (restart analysis) in the complex frequency domain using the hysteretic models computed in Step 2 for all selected panels
- Check convergence of the nonlinear SSI response after new SSI iteration to stop; otherwise continue with a new iteration

Option NON Applicability to Concrete Structures

Option NON is applicable to the reinforced concrete structures for simulating the *concrete cracking* and *post-cracking behavior* in the low-rise shearwalls for *the design-level* and/*or beyond-the-design-level* seismic inputs.

The Option NON was validated for the low-rise reinforced concrete shearwall buildings that fail primarily due to the *in-plane shear deformation*. Based on the time-domain hysteretic behavior, the elastic modulus and damping in each concrete wall are modified iteratively based on the local stress and deformation levels. No out-plane nonlinear concrete behavior is considered.

However, Option NON can also consider the nonlinear concrete behavior due to *the in-plane bending deformation* effects.

In the same nonlinear structure FE model, the analyst can include wall panels (parts of walls) that fail primarily either due to the shear deformation or the bending deformation, respectively. This has an useful practicality.

Nonlinear Concrete Building Split in Wall Panels

Nuclear building model split in nonlinear panels with different nonlinear properties. Many ACS SASSI User-Interface commands are available: WALLFLR, SPLITWALL, SEGWALLS, MERGEPANEL, EDGE, UNIPL, MERGEGROUP, EDGEPANEL, etc.

Each panel should be described by its elastic properties, BBC and hysteretic model for in-plane shear or bending deformation (Cheng-Mertz for Shear and Bending, and Takeda)

9

Applicable to Low-Rise Shearwall Structures

Based on the hysteretic behavior of each wall panel, the local equivalentlinear properties are computed after each SSI iteration. The stiffness reduction is applied directly to the elastic modulus for each panel. This implies, under the isotropy material assumption, that the shear, axial and bending stiffnesses suffer the same level of degradation. Poisson ratio is considered to remain constant.

The wall panel shear stiffness modification as a result on nonlinear behaviour is fully coupled with the bending stiffness. This is a reasonable assumption *only for the low-rise shearwalls for which the nonlinear behaviour is governed by the shear deformation, while bending effects play an insignificant role.*

Based on various experimental tests done at Cornell University, Gergely points out in NUREG/CR 4123, 1984 that in the low-rise walls such as those that occur in the modern nuclear power plants, the flexural distortions and associated vertical yielding play a negligible role. This was also recognized by many other research studies, including the EPRI report on "Methodology for Developing Seismic Fragilities" (Reed and Kennedy, 1994).

Computation of Shear and Bending Deformation

Shear Strain

Bending Strain

Remark: Rigid body motion is removed

Chen-Mertz Hysteretic Model for Low-Rise Shearwalls

Nonlinear XYZ Response at Each SSI Iteration

9

4

In the current Option NON there is no hysteretic model included for handling axial deformation in wall panels under vertical uniform forces. It should be noted that new ASCE 4-16 recommends to reduce only the shear and bending wall stiffnesses due to the concrete cracking, while the axial stiffness remains unchanged. The structure behaves nonlinearly under the horizontal input components and linearly elastic under the vertical seismic component.

The horizontal and vertical displacements computed at the corners of each wall panel shall include for each SSI iteration, the combined effects of the three seismic input components. This is achieved by using the COMB_XYZ_THD auxiliary program that is automatically included in the batch run file generated by the NONLINBAT, 1. The COMB_XYZ_THD.inp text file that is the input of the COMB_XYZ_THD auxiliary should be defined by the user (see example file for the COMB_XYZ_THD auxiliary program included on the installation DVD).

Building BBC for Shear Deformation

The wall panel BBC curves should have a smooth shape and variation that describes the nonlinear behavior of the wall panels under the lateral seismic loading.

The BBC could be built based on the existing pertinent technical recommendations, or computed using static nonlinear push-over FE analysis. For estimating the low-rise shearwall panel capacities there are a significant number of sources in the literature that provide empirical equations for computing the wall panel shear capacities (Gulec and Whittaker, 2009, Wood, 1990, ACI 349-08, Barda et al., 1977).

Using the SHEAR command the user can check the computed shear capacity values based on different shear capacity equations. After selecting the shear capacity equation model, using the BBCGEN command smooth BBC curves can be automatically generated for many wall panels.

Experiment-Based Shear Capacities for Squats

Walls have no openings.

Useful References for Peak Capacity Equations:

- Barda et al., 1977 in the 1994 EPRI Reports could overly estimate
- ASCE 43-05, 2005 Eqs. 4-3/4 based on Barda, ASCE 43-19 took out it
- ACI 349-06, 2006, Section 11.10, 21.4, based on Barda
- Wood, 1990 small bias, typically less 10% lower, for median capacity
- Gulec and Whittaker, 2009, Eqs. 6.9-6.10, small bias for median capacity

NOTE: ATC 72-1 Option 3, 2010 for reduce yielding and peak capacities to account cyclic degradation effects for many cycles.

Shear Capacities for Squat Wall Panels

The wall panel BBC curves should have a *smooth shape* and variation that describes the nonlinear behavior of the wall panels under the lateral seismic loading. For estimating the low-rise shearwall panel capacities there are a significant number of sources in the literature that provide empirical equations for computing the wall panel shear capacities.

The SHEAR and BBCGEN commands include four capacity equations:

- 1 ACI 318-08
- 2 Wood 1990
- 3 Barda 1977
- 4 Gulec-Whittaker 2009

Please see details in Gulec and Whittaker, 2009, Wood, 1990, ACI 349-08, Barda et al., 1977.

SHEAR Command

SHEAR, <panel>,[fc],[fy],[P],[Nu],[Fvw],[Fbe]

This command calculates the peak shear strength of a single panel or all wall panels. The SHEAR command uses four different peak shear equations, such as those provided by ACI 318-08, Wood, 1990, Barda et al.,1977 and Gulec-Whitakker, 2009 (please see Gulec and Whittaker, 2009 for details).

The lower bound value for Wood, 1990, and the upper bound value for Wood, 1990 and ACI 318-08 equations are also included. A total of six columns with computed peak shear strength are written for each panel. The columns of the result table are in order, the panel number, upper bound of ACI 318-08 and Wood, 1990, lower bound of Wood, 1990, Barda,1977 and Gulec-Whittaker, 2009. For a single panel command, a title with names of equation is provided.

9 ⁹SHEAR Command for Computing Wall Shear Capacities

Barda et al., 1977:

The Barda equation (equation 2-7 or 4-7 in Gulec and Whittaker, 2009) is applicable to squat walls with heavily reinforced flanges (barbells). For typical shearwalls in nuclear facilities Barda equation could provide overly estimated shear strength values. Axial force effect is included.

$$V = \left(8\sqrt{f'_{c}} - 2.5\sqrt{f'_{c}}\frac{h_{w}}{l_{w}} + \frac{N_{u}}{4l_{w}t_{w}} + \rho_{v}f_{y}\right)t_{w}(0.6l_{w})$$

Wood, 1990:

The Wood equation appears (equation 2-8 in Gulec and Whittaker, 2009) close to be quite close to the median estimates for ultimate shear strength for various squat wall tests. Axial force is not included.

$$6\sqrt{f_{c}^{'}}A_{w} \le V = \frac{\rho_{v}A_{w}f_{y}}{4} \le 10\sqrt{f_{c}^{'}}A_{w}$$

0ACI 318-08, 2008:

The ACI 318-08 Chapter 11 equation appears (equation 4-1 in Gulec and Whittaker, 2009) could provide overly estimated ultimate shear strengths. Axial force is not included.

$$\mathbf{V} = \left(\alpha_{c} \sqrt{f_{c}'} + \rho_{H} f_{y} \right) \mathbf{A}_{W} \leq 10 \sqrt{f_{c}'} \mathbf{A}_{W}$$

Gulec-Whittaker, 2009:

The Gulec-Whittaker equation appears (equation 6-9 in Gulec and Whittaker, 2009) to be also close close to the median estimates for the ultimate shear strength for various squat wall tests.

This Gulec-Whittaker equation is sensitive to the panel height/length aspect ratio. If this equation is applied to long panels the ultimate shear force goes up much closer to Barda, 1977 or ACI 318-08 shear force results, and even higher. Axial force is included.

$$V = \left(1.5\sqrt{f_{c}} A_{w} + 0.25F_{vw} + 0.20F_{BE} + 0.40N_{u}\right) / \sqrt{h_{w} / l_{w}}$$

Shearwall Panel 17 Hysteretic Behavior Barda (1977) vs. Wood (1990) for 0.60g Input

Automatic Building of BBCs Using BBCGEN

- ² Using the BBCGEN command smooth BBC curves can be automatically generated for many wall panels in the model/submodel. For each panel the concrete strength, fc, reinforcement yielding strength, fy, and reinforcement ratio, rp, should be input. Two options for defining cracking point are included.
 - BBCGEN,<Panel>,<ShearModel>,[fc],[fy],[rp],

Including Wall Openings Semi Automatically

3

Solid Wall – 1 Panel

Wall with Two Openings – 3 Panels

Wall with Two Openings - 5 Panels

Nonlinear SSI Effects Due Openings in Walls

Selected Building Locations for Comparisons of Seismic SSI Responses

1

Effects of 7% Damping Cut-Off For DBE Level 0.30g Input on Effective Panel Stiffness

Panel 17 Hysteretic Behavior w/ and w/o 7% Damping Cut-Off for DBE 0.30g Input

Computed ARS for DBE 0.30g Input. UC 4% and CR 7% for No Damping Cut for 0.30g High-Elevation Basemat

2018 Copyright of Ghiocel Predictive Technologies, Inc., USNRC Presentation, Session 3, Nov 15, 2018

¹ ACS SASSI Linear vs. Nonlinear SSI for Soil Site. Structural Displacements

Nonlinear Springs Used for Modeling Base-Isolators or Checking Building Sliding

7. Option PRO

Probabilistic SRA and SSIA

ASCE 4-16 Probabilistic Site Response Analysis (PSRA) and Probabilistic SSI Analysis (PSSIA)

Based on the new ASCE 04-2016 recommendations:

- Probabilistic SSI analyses should be performed using at least 30 LHS randomized simulations

- For the *design-level applications*, *probabilistic SSI responses* should defined for the 80% non-exceedance probability (NEP).

- Probabilistic modeling should minimally include:

- SEISMIC INPUT: GMRS/UHRS amplitude assumed to randomly varying (Methods 1 and 2).

- SOIL PROFILE: Vs and D soil profiles
- STRUCTURE: Effective stiffness and damping, as functions

of stress/strain level in different parts of structure.

ASCE 4-16 Probabilistic SSI Simulation Concept

1 1 5

Probabilistic Seismic Input Models

1 1 6

Probabilistic Seismic GRS Input Models

Probabilistic GRS and Its Simulated GRS Samples using ASCE 4 Methods 1 (left) and Method 2 (right)

Vs and D Soil Profile Probabilistic Models Using Multiple Segments Split

Different statistical properties for different soil profile segments in depth

Vs and D Soil Profile Probabilistic Models. Two Variation Scale Models Based on Field Data

Correlation Length Effects on Soil Profile Shapes

Two Soil Profile Random Samples Simulate Using Method 1 for Two Correlation Lengths; 2ft Correlation Length (left) and 20ft Correlation Length (right)

Probabilistic Soil Material Curve Models

Probabilistic Soil Profiles & Material Curves

1

Simulated vs. Target Soil Vs Profiles Using Method 1 (left) and Method 2 (right)

Soil G/Gmax and D Curve Random Variations (left); Simulated G/Gmax for 4 Soil Curves (right). The Mean Values of 4 Soil Curves Are Plotted with Green Lines.

Probabilistic Structural Models; Effective Stiffness and Damping of Panels Dependent on Strain Levels

- Keff/Kel and Deff variables should defined by user *for each element group*.
- Effective stiffness ratio Keff/Kelastic and damping ratio, Deff, should be modeled as *statistically dependent* random variables. They can be considered *negatively correlated*, or Deff defined as a *response function* of Keff/Kelastic based on experimental tests.

Reinforced Concrete Structural Behavior Consistent with Wall (Panel) Strains for Each Seismic Input

(1.0 Ec, Damping = 4%)

3 fc /Gc (shear strain)

Iterative SSI Fast Analyses Until Convergence

Probabilistic SRA and SSIA Steps

1) **PREPARE SSI INPUTS:** Using ACS SASSI PRO modules, generate statistical ensembles for Probabilistic SRA and/or Probabilistic SSI analysis input simulations (*ProEQUAKE, ProSITE, ProSOIL and ProHOUSE, ProNON, ProMOTION, ProSTRESS*)

2) **PERFORM SSI ANALYSIS:** Using the *ACS SASSI modules,* run in batch the ensembles of the simulated input files to compute the SSI responses (SITE, SITE, SOIL, HOUSE, ANALYS, MOTION, RELDISP, NONLINEAR, STRESS).

3) **POST-PROCESS SSI RESPONSES:** Using the ACS SASS/ PRO modules, post-process statistically the ensembles of the simulated SSI responses (*ProSRSS, ProRESPONSE*)

8. Show Demos 1, 7, 13

Thank you!