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1. Reliability Analysis for Aging Components1. Reliability Analysis for Aging Components
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Probabilistic Crack Growth and Detection Process

Detection Level

Critical Length
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Different Airport Locations 

Stochastic Aircraft Operating EnvironmentStochastic Aircraft Operating Environment



2. Corrosion2. Corrosion--Fatigue Damage ModelingFatigue Damage Modeling

(after Craig Brooks, APES Inc.)(after Craig Brooks, APES Inc.)

Six Aging Stages (ASix Aging Stages (A--F)F)
Pitting CorrosionPitting Corrosion--Fatigue Fatigue 
Damage/Life ModelsDamage/Life Models



Model 1: Simultaneous CF Model (SCF)Model 1: Simultaneous CF Model (SCF)
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Forman FCG Model (NASA JPL, 1996)
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where

Model 1: FASTRANModel 1: FASTRAN--CF Model for CF (CCCF)CF Model for CF (CCCF)

FASTRAN-CF

Pitting Corrosion-Fatigue Model (FASTRAN-CF)
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Fatigue Model

Pit Growth

Corrosion-Fatigue Life Model

Model 2: Model 2: WeiWei CorrosionCorrosion--Fatigue Model (WCF) Fatigue Model (WCF) 

Paris’s Law
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Comparative Results Comparative Results 

Comparative Results forComparative Results for
SCF Model (SCF Model (ProCORFAProCORFA)  )  
vs. CCCF Model (FASTRANvs. CCCF Model (FASTRAN--
CF) and WCF Model (CF) and WCF Model (WeiWei))

CorrosionCorrosion--FatigueFatigue
2 Flights per day2 Flights per day

CorrosionCorrosion--FatigueFatigue
10 Flights per day10 Flights per day

SCF
WCF

CCCF

SCF
WCF
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Stochastic CorrosionStochastic Corrosion--Fatigue Life SimulationFatigue Life Simulation

Fatigue Corrosion-Fatigue
All Airport Locations

Fatigue
Corrosion Fatigue
Single Location 

Fatigue
Corrosion-Fatigue
All Locations



3. Stochastic Multi3. Stochastic Multi--Scale FE AnalysisScale FE Analysis

Global Model:
• Shell and beam elements
• “Weld” stringers and frames 

with skin panel
• Linear analysis
• Find critical locations

Local Model:
• Solid elements
• Includes contacts
• Obtain BCs from global 

model
• Consider stochastic 

parameters
• Detailed local stresses

Very Local Model:
• Axisymmetric elements
• Material and full contact 

nonlinearity 
• Residual stress and 

interference analysis

Displacement constraints of boundary 
nodes are interpolated from global 
model using sub-modeling technique 



Stochastic Modeling for Aircraft Lap Joint Stochastic Modeling for Aircraft Lap Joint 
Define Stochastic Variables

Loading/Cabin Pressure Cycles
Manufacturing Tolerances
Material (Elastic modulus, etc.)
Corrosion Material Loss

Governing Stochastic Variables
Rivet interference  
Skin panel thickness
Rivet hole location
Rivet hole diameters
Corrosion Loss

PASSENGER A/C 3 HR FLIGHT - FUSELAGE - CROWN SKIN - 
BS 600K, S-1
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Remarks: We consider up to 55 random variables within a single stochastic FEA. However, only a 
limited number of variables, say 5-6, are of significance at different critical locations



Stochastic Response Surface ApproximationsStochastic Response Surface Approximations

Implicit Formulation: Using joint PDF estimation of  
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Solution is obtained by stochastic interpolation

Explicit Formulation: Using function approximation via nonlinear regression

Convergence: Minimizing Mean-Square Error (in Mean-Square sense)
Causal relationship. We used spatial Krigging.

)(r]y[E xx =

Convergence: Using Maximumum Likelihood Function (in Probability sense)
Non-causal relationship. We use 2-and 3-Level Hierarchical Models

SecondSecond--Order (SO) Approximation of Stochastic FieldsOrder (SO) Approximation of Stochastic Fields

HighHigh--Order (HO) Approximation of Stochastic FieldsOrder (HO) Approximation of Stochastic Fields

Defined by stochastic vector or field



HO SF Models Applicable to Highly NonHO SF Models Applicable to Highly Non--Gaussian RSGaussian RS

Data Space “State” Space

Multimodal Joint PDFMultimodal Joint PDF

Space TransformationSpace Transformation



2L HM w/ PB RBF2L HM w/ PB RBF
TwoTwo--Level Hierarchical Model Versus Level Hierarchical Model Versus KriggingKrigging with 11% Noisewith 11% Noise

KriggingKrigging w/ Gaussian SCFw/ Gaussian SCF
No NoiseNo Noise 11% Noise11% Noise



4. Aircraft 4. Aircraft LapjointLapjoint ExampleExample

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Pressurization  
    Inside Aircraft            Load Transfer in the Lapjoint 
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Sensitivity Studies for Identifying Critical Sensitivity Studies for Identifying Critical 
Stress Locations and Input VariablesStress Locations and Input Variables

Random Variables used in Sensitivity StudyRandom Variables used in Sensitivity Study

Elasticity modulus                                 
Thickness change of the splices
Location shift of rivets
Diameters of rivet holes
Interferences at the rivet holes

Governing Random VariablesGoverning Random Variables

Thickness change of splices
Hole location shifts
Interference between the rivet and holes



Comparison of FEA and Response Surface ResultsComparison of FEA and Response Surface Results
-- Location 7 of Hole 3Location 7 of Hole 3

Direct Stochastic FE Analysis Response Surfaces
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Stochastic Response Surface Sections in 2DStochastic Response Surface Sections in 2D
Response of L7 at Hole 3Response of L7 at Hole 3

Input Variables: Interference of Hole 1
Thickness change of Plate #1

Fixed values for other variables
Remark: Both variables show significant influences to the response surface

Stress Range at L7 of Hole 3 Mean Stress at L7 of Hole 3



BivariateBivariate Stress Distribution at L3 of Hole 1 Stress Distribution at L3 of Hole 1 

Mean StressMean Stress Stress RangeStress Range



Simulation of Corrosion Surface TopographySimulation of Corrosion Surface Topography



Simulation of FE Model with Material Loss Due Simulation of FE Model with Material Loss Due 
to Corrosion (Details of Local Lap Joint Model)to Corrosion (Details of Local Lap Joint Model)



Histogram Comparisons for With and Without Histogram Comparisons for With and Without 
Material Loss Due to Corrosion (at L7 of Hole #3)Material Loss Due to Corrosion (at L7 of Hole #3)
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One Flight/Day

One Flight/Day

Three Flights/Day

Three Flights/Day



Effect of the Operator’s Skill. Effect of Crack Limit Criterion. 

One Flight/Day Three Flights/Day

One Flight/Day



1. Computational reliability analysis for aging aircraft structures using physics-
based stochastic corrosion-fatigue damage models provides a quantitative 
tool for reducing maintenance while maintaining the safety. 
Availability of statistical data and their collection and use baAvailability of statistical data and their collection and use based on an insed on an in--depth depth 
understanding of the physics and stochastic modeling of the probunderstanding of the physics and stochastic modeling of the problem represent critical lem represent critical 
aspects of probabilistic technology implementation (need of sharaspects of probabilistic technology implementation (need of sharing the available data ing the available data 
between the people with data and the people with physics and stobetween the people with data and the people with physics and stochastic modeling chastic modeling 
expertise that are often in different business organizations… crexpertise that are often in different business organizations… cross communication is key!). oss communication is key!). 

2. Airport rotation is an important factor for lowering aircraft risks per fleet. 
3. IDS sizes near surface, corrosion pit depths, airport environment severity, 

number of flights/day, FE modeling including manufacturing tolerances, and 
inspection quality appears to be the main critical factors for aircraft risk 
prediction.

4.    Stochastic FEA accuracy has a significant impact on aircraft risk prediction. 
Neglecting structural uncertainties is highly unconservative. 

5. Concluding Remarks5. Concluding Remarks


