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20.1 Introduction 

 

The term “simulation” comes from the Latin word 

 

simulatio

 

, which means to imitate a phenomenon or
a generic process. In the language of mathematics, the term “simulation” was used for the first time
during the World War II period at the Los Alamos National Laboratory by the renowned mathematicians
Von Neumann, Ulam, Metropolis and physicist Fermi, in the context of their nuclear physics research
for the atomic bomb. About the same time they also introduced an exotic term in mathematics, namely
“Monte Carlo” methods. These were defined as numerical methods that use artificially generated statis-
tical selections for reproducing complex random phenomena and for solving multidimensional integral
problems. The name “Monte Carlo” was inspired by the famous Monte Carlo casino roulette, in France,
that was the best available generator of uniform random numbers.

In scientific applications, stochastic simulation methods based on random sampling algorithms, or
Monte Carlo methods, are used to solve two types of problems: (1) to generate random samples that
belong to a given stochastic model, or (2) to compute expectations (integrals) with respect to a given
distribution. The expectations might be probabilities, or discrete vectors or continuous fields of proba-
bilities or in other words, probability distributions. It should be noted that if the problem is solved,
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so that random samples are available, then the solution to the problem, to compute expectations, becomes
trivial because expectations can be approximated by the statistical averaging of the random samples.

The power of Monte Carlo methods manifests visibly for multidimensional probability integration
problems, for which the typical deterministic integration algorithms are extremely inefficient. For very
low-dimensional problems, in one dimension or two, Monte Carlo methods are too slowly convergent
and therefore there is no practical interest in employing them. For a given number of solution points 

 

N

 

,
the Monte Carlo estimator converges to the exact solution with rate of the order O( ) in comparison
with some deterministic methods that converge much faster with rates up to the order O( ) or even
O(exp(

 

−

 

N

 

)). Unfortunately, for multidimensional problems, the classical deterministic integration
schemes based on regular discretization grids fail fatally. The key difference between stochastic and
deterministic methods is that the Monte Carlo methods are, by their nature, meshless methods, while
the deterministic integration methods are regular grid-based methods. The problem is that the classical
grid-based integration methods scale very poorly with the space dimensionality.

The fact that the Monte Carlo estimator convergence rate is independent of the input space dimen-
sionality makes the standard Monte Carlo method very popular for scientific computing applications.
Although the statistical convergence rate of the Monte Carlo method is independent of the input space
dimensionality, there are still two difficulties to address that are dependent on the input space dimen-
sionality: (1) how to generate uniformly distributed random samples in the prescribed stochastic input
domain, and (2) how to control the variance of Monte Carlo estimator for highly “nonuniform” stochastic
variations of the integrand in the prescribed input domain. These two difficulties are becoming increas-
ingly important as the input space dimensionality increases. One can imagine a Monte Carlo integration
scheme as a sort of a random fractional factorial sampling scheme or random quadrature that uses a
refined cartesian grid of the discretized multidimensional input domain with many unfilled nodes with
data, vs. the deterministic integration schemes or deterministic quadratures that can be viewed as
complete factorial sampling schemes using cartesian grids with fully filled nodes with data. Thus, a very
important aspect to get good results while using Monte Carlo is to ensure as much as possible a 

 

uniform
filling

 

 of the input space domain grid with statistically independent solution points so that the potential
local subspaces that can be important are not missed. The hurting problem of the standard Monte Carlo
method is that for high-dimensional spaces, it is difficult to get uniform filling of the input space. The
consequence of a nonuniform filling can be a sharp increase in the variance of the Monte Carlo estimator,
which severely reduces the attraction for the method.

The classical way to improve the application of Monte Carlo methods to high-dimensional problems
is to partition the stochastic input space in subdomains with uniform statistical properties. Instead of
dealing with the entire stochastic space, we deal with subdomains. This is like defining a much coarser
grid in space to work with. The space decomposition in subdomains may accelerate substantially the
statistical convergence for multidimensional problems. Stratified sampling and importance sampling
schemes are different sampling weighting schemes based on stochastic space decomposition in partitions.
Using space decomposition we are able to control the variation of the estimator variance over the input
domain by focusing on the most important stochastic space regions (mostly contributing to the integrand
estimate) and adding more random data points in those regions.

Another useful way to deal with the high dimensionality of stochastic space is to simulate correlated
random samples, instead of statistically independent samples, that describe a random path or walk in
stochastic space. If the random walk has a higher attraction toward the regions with larger probability
masses, then the time spent in a region vs. the time (number of steps) spent in another region is
proportional to the probability mass distributions in those regions. By withdrawing samples at equal
time intervals (number of steps), we can build an approximation of the prescribed joint probability
distribution. There are two distinct classes of Monte Carlo methods for simulating random samples from
a prescribed multivariate probability distribution: (1) static Monte Carlo (SMC), which is based on the
generation of independent samples from univariate marginal densities or conditional densities; and (2)
dynamic Monte Carlo (DMC), which is based on spatially correlated samples that describe the random
evolutions of a 

 

fictitious

 

 stochastic dynamic system that has a stationary probability distribution identical

  N
−1 2/

  N
−4

 

1180_C20.fm  Page 2  Wednesday, October 27, 2004  8:04 PM



 

Stochastic Simulation Methods for Engineering Predictions

 

20

 

-3

 

with the prescribed joint probability distribution. Both classes of Monte Carlo methods are discussed
herein.

This chapter focuses on the application of Monte Carlo methods to simulate random samples of a
variety of stochastic models — from the simplest stochastic models described by one-dimensional random
variable models, to the most complex stochastic models described by hierarchical stochastic network-
like models. The chapter also includes a solid section on high-dimensional simulation problems that
touches key numerical issues including sequential sampling, dynamic sampling, computation of expec-
tations and probabilities, modeling uncertainties, and sampling using stochastic partial-differential equa-
tion solutions. The goal of this chapter is to provide readers with the conceptual understanding of different
simulation methods without trying to overwhelm them with all the implementation details that can be
found elsewhere as cited in the text.

 

20.2 One-Dimensional Random Variables

 

There are a large number of simulation methods available to generate random variables with various
probability distributions. Only the most popular of these methods are reviewed in this chapter: (1) inverse
probability transformation, (2) sampling acceptance-rejection, (3) bivariate functional transformation,
and (4) density decomposition. The description of these methods can be found in many textbooks on
Monte Carlo simulations [1–5]. Herein, the intention is to discuss the basic concepts of these methods
and very briefly describe their numerical implementations. In addition to these classical simulation
methods, there is a myriad of many other methods, most of them very specific to particular types of
problems, that have been developed over the past decades but for obvious reasons are not included.

 

20.2.1 Uniform Random Numbers

 

The starting point for any stochastic simulation technique is the construction of a reliable uniform
random number generator. Typically, the random generators produce random numbers that are uni-
formly distributed in the interval [0, 1]. The most common uniform random generators are based on
the linear congruential method [1–5].

The quality of the uniform random number generator reflects on the quality of the simulation results.
It is one of the key factors that needs special attention. The quality of a random generator is measured
by (1) the uniformity in filling with samples the prescribed interval and (2) its period, which is defined
by the number of samples after which the random generator restarts the same sequence of independent
random numbers all over again. Uniformity is a crucial aspect for producing accurate simulations, while
the generator periodicity is important only when a large volume of samples is needed. If the volume of
samples exceeds the periodicity of the random number generator, then the sequence of numbers generated
after this is perfectly correlated with initial sequence of numbers, instead of being statistically independent.
There are also other serial correlation types that can be produced by different number generators [4]. If
we need a volume of samples for simulating a rare random event that is several times larger than the
generator periodicity, then the expected simulation results will be wrong due to the serial correlation of
the generated random numbers.

An efficient way to improve the quality of the generated sequence of uniform numbers and break their
serial correlation is to combine the outputs of few generators into a single uniform random number that
will have a much larger sequence periodicity and expectedly better space uniformity. As general advice to the
reader, it is always a good idea to use statistical testing to check the quality of the random number generator.

 

20.2.2 Inverse Probability Transformation

 

Inverse probability transformation (IPT) is based on a lemma that says that for any random variable 

 

x

 

with the probability distribution 

 

F

 

, if we define a new random variable 

 

y

 

 with the probability distribution

 

F

 

−

 

1

 

 (i.e., the inverse probability transformation of 

 

F

 

), then 

 

y

 

 

 

=

 

 

 

F

 

−

 

1

 

(

 

u

 

) has a probability distribution 

 

F

 

.
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The argument 

 

u

 

 of the inverse probability transformation stands for a uniformly distributed random
variable.

The general algorithm of the IPT method for any type of probability distribution is as follows:

Step 1: Initialize the uniform random number generator.
Step 2: Implement the algorithm for computing 

 

F

 

−

 

1

 

.
Step 3: Generate a uniform random number 

 

u

 

 in the interval [0, 1].
Step 4: Compute the generated deviate 

 

x

 

 with the distribution 

 

F

 

 by computing 

 

x

 

 

 

=

 

 

 

F

 

−

 

1

 

(

 

u

 

).

Because the probability or cumulative distribution functions (CDFS) are monotonic increasing func-
tions, the IPT method can be applied to any type of probability distribution, continuous or discrete,
analytically or numerically defined, with any probability density function (PDF) shapes, from symmetric
to extremely skewed, from bell-shaped to multimodal-shaped.

Very importantly, IPT can be also used to transform a sequence of Gaussian random deviates into a
sequence of nonGaussian random deviates for any arbitrarily shaped probability distribution. A gener-
alization of the IPT method, called the transformation method, is provided by Press et al. [4].

 

20.2.3 Sampling Acceptance-Rejection 

 

Sampling acceptance-rejection (SAR) uses an auxiliary, trial, or proposal density to generate a random
variable with a prescribed distribution. SAR is based on the following lemma: If 

 

x

 

 is a random variable
with the PDF 

 

f(x)

 

 and 

 

y

 

 is another variable with the PDF 

 

g

 

(

 

y

 

) and the probability of 

 

f

 

(

 

y

 

) 

 

=

 

 0, then the
variable 

 

x

 

 can generated by first generating variable 

 

y

 

 and assuming that there is a positive constant 

 

α

 

such as . If 

 

u

 

 is a uniform random variable defined on [0, 1], then the PDF of 

 

y

 

 conditioned
on relationship  is identical with 

 

f

 

(

 

x

 

).
A typical numerical implementation of the SAR method for simulating a variable 

 

x

 

 with the PDF

 

 f

 

(

 

x

 

)
is as follows:

Step 1: Initialize the uniform random number generator and select constant 

 

α

 

.
Step 2: Generate a uniform number 

 

u

 

 on [0, 1] and a random sample of 

 

y

 

.
Step 3: If 

 

u

 

 

 

>

 

 

 

f

 

(

 

y

 

)/

 

α

 

g

 

(

 

y

 

), then reject the pair (

 

u

 

, 

 

y

 

) and go back to the previous step.
Step 4: Otherwise, accept the pair (

 

u

 

, 

 

y

 

) and compute 

 

x

 

 

 

=

 

 

 

y

 

.

It should be noted that SAR can be easily extended to generate random vectors and matrices with
independent components.

The technical literature includes a variety of numerical implementations based on the principle of
SAR [6]. Some of the newer implementations are the weighted resampling and sampling importance
resampling (SIR) schemes [6, 7] and other adaptive rejection sampling [8].

 

20.2.4 Bivariate Transformation 

 

Bivariate transformation (BT) can be viewed as a generalization of the IPT method for bivariate proba-
bility distributions. A well-known application of BT is the Box-Muller method for simulating standard
Gaussian random variables [9]. Details are provided in [4–6].

 

20.2.5 Density Decomposition

 

Density decomposition (DD) exploits the fact that an arbitrary PDF, 

 

f

 

(

 

x

 

), can be closely approximated
in a linear combination elementary density function as follows:

(20.1)

in which , , and .

α ≥ f x g x( )/ ( )

    0 ≤ ≤u f y g y( )/ ( )α

f x p g xi i

i

N

( ) ( )=
=

∑
1

0 1≤ <pi   1 ≤ ≤i N   ∑ ==i
N

ip1 1
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The typical implementation of DD for a discrete variable 

 

x

 

 is as follows:

Step 1: Initialize for the generation of a uniform random number and a variable 

 

z

 

i

 

 with the PDF 

 

g

 

i

 

(

 

x

 

).
This implies that 

 

x

 

 

 

=

 

 

 

z

 

i

 

 with the probability 

 

p

 

i

 

. 
Step 2: Compute the values  for all 

 

i

 

 values, 

 

i

 

 

 

=

 

 1,

 

 N

 

.
Step 3: Generate a uniform random variable 

 

u

 

 on [0, 1].
Step 4: Loop 

 

j

 

 

 

=

 

 1, 

 

N

 

 and check if 

 

u

 

 < 

 

G

 

i

 

(

 

x

 

). If not, go to the next step.
Step 5: Generate 

 

z

 

j

 

 and assign 

 

x

 

 

 

=

 

 

 

z

 

j

 

.

It should be noted that the speed of the above algorithm is highest when the 

 

p

 

i

 

 values are ordered in
descending order. It should be noted that DD can be combined with SAR. An example of such a
combination is the Butcher method [10] for simulating normal deviates.

 

20.3 Stochastic Vectors with Correlated Components

 

In this section the numerical simulation of stochastic vectors with independent and correlated compo-
nents is discussed. Both Gaussian and nonGaussian vectors are considered.

 

20.3.1 Gaussian Vectors

 

A multivariate Gaussian stochastic vector 

 

x of size m with a mean vector � and a covariance matrix �
is completely described by the following multidimensional joint probability density function (JPDF):

(20.2)

The probability distribution of vector x is usually denoted as N(�, �). If the Gaussian vector is a
standard Gaussian vector, z, with a zero mean, 0, and a covariance matrix equal to an identity matrix,
I, then its probability distribution is N(0, I). The JPDF of vector z is defined by:

(20.3)

To simulate a random sample of a Gaussian stochastic vector x (with correlated components) that has
the probability distribution N(�, �), a two computational step procedure is needed:

Step 1: Simulate a standard Gaussian vector z (with independent random components) having a
probability distribution N(0, I). This step can be achieved using standard routines for simu-
lating independent normal random variables.

Step 2: To compute the vector x use the linear matrix equation

x = � + Sz (20.4)

where matrix S is called the square-root matrix of the positively definite covariance matrix �.
The matrix S is a lower triangular matrix that is computed using the Choleski decomposition
that is defined by the equation 

Another situation of practical interest is to generate a Gaussian vector y with a probability distribution
 that is conditioned on an input Gaussian vector x with a probability distribution .

Assuming that the augmented vector  has the mean � and the covariance matrix � defined by

(20.5)

    
G x pi j

i
j( ) = ∑ =1
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x x
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i

m
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


= −





=

1

2

1

2

1

2

1

2
2

1

2 1

2

( ) (det )

exp exp

π πΣ
Π

SST =  ΣΣ.

N y yy( , )µ ∑ N x xx( , )µ ∑

   [ ]x, y T

µ
µ
µ

Σ
Σ

Σ
Σ

=






∑ =






y

x

yy

xy

yx

xx

1180_C20.fm  Page 5  Wednesday, October 27, 2004  8:04 PM



20-6 Engineering Design Reliability Handbook

then the statistics of the conditional vector y are computed by the matrix equations:

(20.6)

It is interesting to note that the above relationships define a stochastic condensation procedure of reducing
the size of a stochastic vector from the size of the total vector  with probability distribution N(�, �)
to a size of the reduced vector y with a probability distribution . The above simulation procedures
employed for Gaussian vectors can be extended to nonGaussian vectors, as shown in the next subsection.

An alternate technique to the Choleski decomposition for simulating stochastic vectors with correlated
components is the popular principal component analysis. Principal component analysis (PCA) is based
on eigen decomposition of the covariance matrix. If PCA is used, then the matrix equation in the Step
2 shown above is replaced by the following matrix equation

(20.7)

where � and  are the eigenvalue and eigenvector matrices, respectively, of the covariance matrix.

20.3.2 NonGaussian Vectors

A nonGaussian stochastic vector is completely defined by its JPDF. However, most often in practice, a
nonGaussian vector is only partially defined by its second-order moments (i.e., the mean vector and the
covariance matrix) and its marginal probability distribution (MCDF) vector. This definition loses infor-
mation about the high-order statistical moments that are not defined.

These partially defined nonGaussian vectors form a special class of nonGaussian vectors called trans-
lation vectors. Thus, the translation vectors are nonGaussian vectors defined by their second-order
moments and their marginal distributions. Although the translation vectors are not completely defined
stochastic vectors, they are of great practicality. First, because in practice, most often we have statistical
information limited to second-order moments and marginal probability distributions. Second, because
they capture the most critical nonGaussian aspects that are most significantly reflected in the marginal
distributions. Of great practical benefit is that translation vectors can be easily mapped into Gaussian
vectors, and therefore can be easily handled and programmed.

To generate a nonGaussian (translation) stochastic vector y with a given covariance matrix  and
a marginal distribution vector F, first a Gaussian image vector x with a covariance matrix  and
marginal distribution vector �(x) is simulated. Then, the original nonGaussian vector y is simulated by
applying IPT to the MCDF vector F as follows:

 = g(x) (20.8)

However, for simulating the Gaussian image vector we need to define its covariance matrix as a
transform of the covariance matrix of the original nonGaussian vector. Between the elements of the
scaled covariance matrix or correlation coefficient matrix of the original nonGaussian vector, , and
the elements of the scaled covariance or correlation coefficient of the Gaussian image vector, , there
is the following relation:

(20.9)

      

µ µ Σ Σ µ

Σ Σ Σ Σ Σ
y y yx xx x

yy yy yx xx xy

= + ⋅ −

= −

−

−

1

1

( )x

[ , ]y x T
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Φ
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where the bivariate Gaussian probability density is defined by:

(20.10)

Two probability transformation options are attractive: (1) the components of the Gaussian image sto-
chastic vector have means and variances equal to those of the original nonGaussian vector (i.e., 
and ), or (2) the Gaussian image vector is standard Gaussian vector (i.e.,  and �x = 1).
Depending on the selected option, the above equations take a simpler form.

Thus, problem of generating nonGaussian vectors is a four-step procedure for which the two steps are
identical with those used for generating a Gaussian vector:

Step 1: Compute the covariance matrix of Gaussian vector x using Equation 20.9.
Step 2: Generate a standard Gaussian vector z.
Step 3: Generate a Gaussian vector x using Equation 20.4 or Equation 20.7.
Step 4: Simulate a nonGaussian vector y using the following inverse probability transformation of the

MCDF,

Sometimes in practice, the covariance matrix transformation is neglected, assuming that the correla-
tion coefficient matrix of the original nonGaussian vector and that of the image Gaussian vector are
identical. This assumption is wrong and may produce a violation of the physics of the problem. It should
be noted that calculations of correlation coefficients have indicated that if  is equal to 0 or 1, then

 is also equal to 0 or 1, respectively. However, when  is −1, then  is not necessarily equal
to −1. For significant negative correlations between vector components, the effects of covariance matrix
transformation are becoming significant, especially for nonGaussian vectors that have skewed marginal
PDF shapes. Unfortunately, this is not always appreciated in the engineering literature. There are a number
of journal articles on probabilistic applications for which the significance of covariance matrix transfor-
mation is underestimated; for example, the application of the popular Nataf probability model to
nonGaussian vectors with correlated components neglects the covariance matrix transformation.
Grigoriu [11] showed a simple example of a bivariate lognormal distribution for which the lowest value
of the correlation coefficient is −0.65, and not −1.00, which is the lowest value correlation coefficient for
a bivariate Gaussian distribution.

For a particular situation, of a nonGaussian component  and a Gaussian component , the corre-
lation coefficient  can be computed by

(20.11)

As shown in the next section, the above probability transformation simulation procedure can be extended
from nonGaussian vectors to multivariate nonGaussian stochastic fields. The nonGaussian stochastic
fields that are partially defined by their mean and covariance functions and marginal distributions are
called translation stochastic fields.

Another way to generate nonGaussian stochastic vectors is based on the application of the SAR method
described for one-dimensional random variables to random vectors with correlated components. This
application of SAR to multivariate cases is the basis of the Metropolis-Hastings algorithm that is extremely
popular in the Bayesian statistics community. Importantly, the Metropolis-Hastings algorithm [12] is
not limited to translation vectors. The basic idea is to sample directly from the JPDF of the nonGaussian
vector using an adaptive and important sampling strategy based on the application of SAR. At each
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simulation step, random samples are generated from a simple proposal or trial JPDF that is different than
the target JPDF and then weighted in accordance with the important ratio. This produces dependent samples
that represent a Markov chain random walk in the input space. The Metropolis-Hastings algorithm is the
cornerstone of the Markov chain Monte Carlo (MCMC) simulation discussed in Section 20.5 of this chapter.

To move from vector sample or state  to state , the following steps are applied:

Step 1: Sample from the trial density, , that is initially assumed to be identical to the
conditional density .

Step 2: Compute acceptance probability

(20.12)

where is the target JPDF.  
Step 3: Compute  for sampling acceptance, otherwise  for sampling rejection.

Based on the ergodicity of the simulated Markov chain, the random samples of the target JPDF are
simulated by executing repeated draws at an equal number of steps from the Markov chain movement
in the stochastic space. There is also the possibility to use multiple Markov chains simultaneously.

A competing algorithm with the Metropolis-Hastings algorithm is the so-called Gibbs sampler [13].
The Gibbs sampler assumes that the probability of sampling rejection is zero; that is, all samples are
accepted. This makes it simpler but less flexible when compared with the Metropolis-Hastings algorithm.
One step of the Gibbs sampler that moves the chain from state  to state  involves the following
simulation steps by breaking the vector x in its k components:

Step 1: Sample .

Step 2: Sample .
(20.13)

Step j: Sample .

Step k: Sample 

To ensure an accurate vector simulation for both the Metropolis-Hastings and the Gibbs algorithms, it
is important to check the ergodicity of the generated chain, especially if they can be stuck in a local
energy minimum. Gibbs sampler is the most susceptible to getting stuck in different parameter space
regions (metastable states).

Most MCMC researchers are currently using derivative of the Metropolis-Hastings algorithms. When
implementing the Gibbs sampler or Metropolis-Hastings algorithms, key questions arise: (1) How do we
need to block components to account for the correlation structure and dimensionality of the target
distribution? (2) How do we choose the updating scanning strategy: deterministic or random? (3) How
do we devise the proposal densities? (4) How do we carry out convergence and its diagnostics on one or
more realizations of the Markov chain?

20.4 Stochastic Fields (or Processes)

A stochastic process or field is completely defined by its JPDF. Typically, the term “stochastic process”
is used particularly in conjunction with the time evolution of a dynamic random phenomenon, while
the term “stochastic field” is used in conjunction with the spatial variation of a stochastic surface. A
space-time stochastic process is a stochastic function having time and space as independent arguments.
The term “space-time stochastic process” is synonymous with the term “time-varying stochastic field.”
More generally, a stochastic function is the output of a complex physical stochastic system. Because a
stochastic output can be described by a stochastic surface in terms of input parameters (for given

xt xt +1

y x yt≈ q( , )

   q
t( | )y x

α π
π

( , ) min ,
( ) ( , )

( ) ( , )
x y

y y x

x x y
t

t

t t

q

q
=







1

π

   x yt + =1
   x xt t+ =1

  x
t

   x
t +1

x x x xt t
k
t

1
1

1 2
+ ≈ ( )π | , ,K

    x
t
2

1+ ≈ π x x x xt t
k
t

2 1
1

3| , , ,+( )K

M

      
x x x x x xj

t
j

t
j
t

j
t

k
t+ +

−
+

+≈ ( )1
1

1
1
1

1π | , , , , ,K K

M
x x x xk

t
k

t
k
t+ +
−
+≈ ( )1

1
1

1
1π | , , .K

1180_C20.fm  Page 8  Wednesday, October 27, 2004  8:04 PM



Stochastic Simulation Methods for Engineering Predictions 20-9

ranges of variability), it appears that the term “stochastic field” is a more appropriate term for stochastic
function approximation. Thus, stochastic field fits well with stochastic boundary value problems.
Stochastic process fits well with stochastic dynamic, phenomena, random vibration, especially for
stochastic stationary (steady state) problems that assume an infinite time axis. The term “stochastic
field” is used hereafter.

Usually, in advanced engineering applications, simplistic stochastic models are used for idealizing
component stochastic loading, material properties, manufacturing geometry and assembly deviations.
To simplify the stochastic modeling, it is often assumed that the shape of spatial random variations is
deterministic. Thus, the spatial variability is reduced to a single random variable problem, specifically to
a random scale factor applied to a deterministic spatial shape. Another simplified stochastic model that
has been extensively used in practice is the traditional response surface method based on quadratic
regression and experimental design rules (such as circumscribed central composite design, CCCD, or
Box-Benken design, BBD). The response surface method imposes a global quadratic trend surface for
approximating stochastic spatial variations that might violate the physics of the problem. However, the
traditional response surface method is practical for mildly nonlinear stochastic problems with a reduced
number of random parameters.

From the point of view of a design engineer, the simplification of stochastic modeling is highly desired.
A design engineer would like to keep his stochastic modeling as simple as possible so he can understand
it and simulate it with a good confidence level (obviously, this confidence is subjective and depends on
the analyst’s background and experience). Therefore, the key question of the design engineer is: Do I
need to use stochastic field models for random variations, or can I use simpler models, random variable
models? The answer is yes and no on a case-by-case basis. Obviously, if by simplifying the stochastic
modeling the design engineer significantly violates the physics behind the stochastic variability, then he
has no choice; he has to use refined stochastic field models. For example, stochastic field modeling is
important for turbine vibration applications due to the fact that blade mode-localization and flutter
phenomena can occur. These blade vibration-related phenomena are extremely sensitive to small spatial
variations in blade properties or geometry produced by the manufacturing or assembly process. Another
example of the need for using a refined stochastic field modeling is the seismic analysis of large-span
bridges. For large-span bridges, the effects of the nonsynchronicity and spatial variation of incident
seismic waves on structural stresses can be very significant. To capture these effects, we need to simulate
the earthquake ground motion as a dynamic stochastic field or, equivalently, by a space-time stochastic
process as described later in this section.

A stochastic field can be homogeneous or nonhomogeneous, isotropic or anisotropic, depending on
whether its statistics are invariant or variant to the axis translation and, respectively, invariant or variant
to the axis rotation in the physical parameter space. Depending on the complexity of the physics described
by the stochastic field, the stochastic modeling assumptions can affect negligibly or severely the simulated
solutions. Also, for complex problems, if the entire set of stochastic input and stochastic system parameters
is considered, then the dimensionality of the stochastic space spanned by the stochastic field model can
be extremely large.

This chapter describes two important classes of stochastic simulation techniques of continuous mul-
tivariate stochastic fields (or stochastic functionals) that can be successfully used in advanced engineering
applications. Both classes of simulation techniques are based on the decomposition of the stochastic field
in a set of elementary uncorrelated stochastic functions or variables. The most desirable situation from
an engineering perspective is to be able to simulate the original stochastic field using a reduced number
of elementary stochastic functions or variables. The dimensionality reduction of the stochastic input is
extremely beneficial because it also reduces the overall dimensionality of the engineering reliability
problem.

This chapter focuses on stochastic field simulation models that use a limited number of elementary
stochastic functions, also called stochastic reduced-order models. Many other popular stochastic simulation
techniques, used especially in conjunction with random signal processing — such as discrete autoregres-
sive process models AR, moving-average models MA, or combined ARMA or ARIMA models, Gabor
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transform models, wavelet transform models, and many others — are not included due to space limita-
tion. This is not to shadow their merit.

In this chapter two important types of stochastic simulation models are described: 

1. One-level hierarchical stochastic field (or stochastic functional) model. This simulation model is
based on an explicit representation of a stochastic field. This representation is based on a statistical
function (causal relationship) approximation by nonlinear regression. Thus, the stochastic field
is approximated by a stochastic hypersurface u that is conditioned on the stochastic input x. The
typical explicit representation of a stochastic field has the following form:

(20.14)

In the above equation, first the conditional mean term, , is computed by minimizing the
global mean-square error over the sample space. Then, the randomly fluctuating term 
is treated as a zero-mean decomposable stochastic field that can be factorized using a Wiener-
Fourier series representation. This type of stochastic approximation, based on regression, is limited
to a convergence in mean-square sense.

In the traditional response surface method, the series expansion term is limited to a single term
defined by a stochastic residual vector defined directly in the original stochastic space (the vector
components are the differences between exact and mean values determined at selected sampling
points via experimental design rules). 

2. Two-level hierarchical stochastic field (or stochastic functional) model. This simulation model is based
on an implicit representation of a stochastic field. This representation is based on the Joint Proba-
bility Density Function (JPDF) (non-causal relationship) estimation. Thus, the stochastic field u is
described by the JPDF of an augmented stochastic system  that includes both the stochastic
input x and the stochastic field u. The augmented stochastic system is completely defined by its
JPDF f (x, u). This JPDF defines implicitly the stochastic field correlation structure of the field.
Then, the conditional PDF of the stochastic field  can be computed using the JPDF of
augmented system and the JPDF of the stochastic input f(x) as follows:

(20.15)

The JPDF of the augmented stochastic system can be conveniently computed using its projections
onto a stochastic space defined by a set of locally defined, overlapping JPDF models. The set of local or
conditional JPDF describe completely the local structure of the stochastic field. This type of stochastic
approximation is based on the joint density estimation convergences in probability sense.

There are few key aspects that differentiate the two stochastic field simulation models. The one-level
hierarchical model is based on statistical function estimation that is a more restrictive approximation
problem than the density estimation employed by the two-level hierarchical model. Statistical function
estimation based on regression can fail when the stochastic field projection on the input space is not
convex. Density estimation is a much more general estimation problem than a statistical function
estimation problem. Density estimation is always well-conditioned because there is no causal relationship
implied.

The two-level hierarchical model uses the local density functions to approximate a stochastic field.
The optimal solution rests between the use of a large number of small-sized isotropic-structure density
functions (with no correlation structure) and a reduced number of large-sized anisotropic-structure
density functions (with strong correlation structure). The preference is for a reduced number of local
density functions. Cross-validation or Bayesian inference techniques can be used to select the optimal
stochastic models based either on error minimization or likelihood maximization.
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20.4.1 One-Level Hierarchical Simulation Models

To simulate complex pattern nonGaussian stochastic fields (functionals), it is advantageous to represent
them using a Wiener-Fourier type series [14–16]: 

(20.16)

where argument z is a set of independent standard Gaussian random variables and f is a set of orthogonal
basis functions (that can be expressed in terms of a random variable set z). A simple choice is to take
the set of stochastic basis functions f equal to the random variables set z. There are two main disadvantages
when using the Wiener-Fourier series approximations. First, the stochastic orthogonal basis functions 
are multidimensional functions that require intensive computations, especially for high-dimensional
stochastic problems for which a large number of coupling terms need to be included to achieve adequate
convergence of the series.

Generally, under certain integrability conditions, a stochastic function can be decomposed in an
orthogonal structure in a probability measure space. Assuming that the uncorrelated stochastic variables

, i = 1, 2, … , m are defined on a probability space and that  is a square-integrable function
with respect to the probability measure and if  i = 1, 2, … , m are complete sets of square-
integrable stochastic functions orthogonal with respect to the probability density , so
that  for all  = 0, 1, … and i = 1, … m, then, the function  can be
expanded in a generalized Wiener-Fourier series:

 (20.17)

where  are complete sets of stochastic orthogonal (uncorrelated)
functions. The generalized Wiener-Fourier series coefficients can be computed by solving the integral

(20.18)

The coefficients  have a key minimizing property, specifically the integral difference

(20.19)

reaches its minimum only for .
Several factorization techniques can be used for simulation of complex pattern stochastic fields. An

example is the use of the Pearson differential equation for defining different types of stochastic series
representations based on orthogonal Hermite, Legendre, Laguerre, and Cebyshev polynomials. These
polynomial expansions are usually called Askey chaos series [16]. A major application of stochastic field
decomposition theory is the spectral representation of stochastic fields using covariance kernel factor-
ization. These covariance-based techniques have a large potential for engineering applications because
they can be applied to any complex, static, or dynamic nonGaussian stochastic field. Herein, in addition
to covariance-based factorization techniques, an Askey polynomial chaos series model based on Wiener-
Hermite stochastic polynomials is presented. This polynomial chaos model based on Wiener-Hermite
series has been extensively used by many researchers over the past decade [15–17].
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20.4.1.1 Covariance-Based Simulation Models

Basically, there are two competing simulation techniques using the covariance kernel factorization: (1) the
Choleski decomposition technique (Equation 20.4), and (2) the Karhunen-Loeve (KL) expansion (Equa-
tion 20.7). They can be employed to simulate both static and dynamic stochastic fields. A notable property
of these two simulation techniques is that they can handle both real-valued and complex-valued covariance
kernels. For simulating space-time processes (or dynamic stochastic fields), the two covariance-based
techniques can be employed either in the time-space domain by decomposing the cross-covariance kernel
or in the complex frequency-wavelength domain by decomposing the complex cross-spectral density
kernel. For real-valued covariance kernels, the application of the KL expansion technique is equivalent to
the application of the Proper Orthogonal Decomposition (POD expansion) and Principal Component
Analysis (PCA expansion) techniques [17, 18].

More generally, the Choleski decomposition and the KL expansion can be applied to any arbitrary
square-integrable, complex-valued stochastic field, . Because the covariance kernel of the complex-
valued stochastic field  is a Hermitian kernel, it can be factorized using either
Choleski or KL decomposition.

If the KL expansion is used, the covariance function is expanded in the following eigenseries:

(20.20)

where λn and Φn(x) are the eigenvalue and the eigenvector, respectively, of the covariance kernel computed
by solving the integral equation (based on Mercer’s theorem) [19]:

(20.21)

As a result of covariance function being Hermitian, all its eigenvalues are real and the associated
complex eigenfunctions that correspond to distinct eigenvalues are mutually orthogonal. Thus, they form
a complete set spanning the stochastic space that contains the field u. It can be shown that if this
deterministic function set is used to represent the stochastic field, then the stochastic coefficients used
in the expansion are also mutually orthogonal (uncorrelated).

The KL series expansion has the general form

(20.22)

where set {zi} represents the set of uncorrelated random variables that are computed by solving the
stochastic integral:

(20.23)

The KL expansion is an optimal spectral representation with respect to the second-order statistics of the
stochastic field. Equation 20.23 indicates that the KL expansion can be applied also to nonGaussian
stochastic fields if sample data from it are available. For many engineering applications on continuum
mechanics, the KL expansion is fast mean-square convergent; that is, only a few expansion terms need
to be included.

An important practicality aspect of the above covariance-based simulation techniques is that they can be
easily applied in conjunction with the marginal probability transformation (Equation 20.8 and Equation 20.9)
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to simulate nonGaussian (translation) stochastic fields, either static or dynamic. For nonGaussian (trans-
lation) stochastic fields, two simulation models can be employed:

1. Original space expansion. Perform the simulation in the original nonGaussian space using the
covariance-based expansion with a set {zi} of uncorrelated nonGaussian variables that can be
computed as generalized Fourier coefficients by the integral

(20.24)

In particular, for the KL expansion, the Equation 20.23 is used. 

2. Transformed space expansion. Perform the simulation in the transformed Gaussian space using the
covariance-based expansion with a set {zi} of standard Gaussian variables and then transform the
Gaussian field to nonGaussian using the marginal probability transformation (Equation 20.8 and
Equation 20.9).

In the engineering literature there are many examples of the application of covariance-based expansions
for simulating either static or dynamic stochastic fields. In the civil engineering field, Choleski decom-
position and KL expansion were used by several researchers, including Yamazaki and Shinozuka [20],
Deodatis [21], Deodatis and Shinozuka [22], and Ghiocel [23] and Ghiocel and Ghanem [24], to simulate
the random spatial variation of soil properties and earthquake ground motions. Shinozuka [25] and
Ghiocel and Trandafir [26] used Choleski decomposition to simulate stochastic spatial variation of wind
velocity during storms. Ghiocel and Ghiocel [27, 28] employed the KL expansion to simulate the sto-
chastic wind fluctuating pressure field on large-diameter cooling towers using a nonhomogeneous,
anisotropic dynamic stochastic field model. In the aerospace engineering field, Romanovski [29], and
Thomas, Dowell, and Hall [30] used the KL expansion (or POD) to simulate the unsteady pressure field
on aircraft jet engine blades. Ghiocel [31, 32] used the KL expansion as a stochastic classifier for jet
engine vibration-based fault diagnostics.

An important aerospace industry application is the stochastic simulation of the engine blade geometry
deviations due to manufacturing and assembly processes. These random manufacturing deviations have
a complex stochastic variation pattern [33]. The blade thickness can significantly affect the forced response
of rotating bladed disks [34–36]. Due to the cyclic symmetry geometry configuration of engine bladed
disks, small manufacturing deviations in blade geometries produce a mode-localization phenomenon,
specifically called mistuning, that can increase the airfoil vibratory stresses up to a few times. Blair and
Annis [37] used the Choleski decomposition to simulate blade thickness variations, assuming that the
thickness variation is a homogeneous and isotropic field. Other researchers, including Ghiocel [38, 39],
Griffiths and Tschopp [40], Cassenti [41], and Brown and Grandhi [35], have used the KL expansion (or
POD, PCA) to simulate more complex stochastic blade thickness variations due to manufacturing. Ghiocel
[36] applied the KL expansion, both in the original, nonGaussian stochastic space and transformed
Gaussian space. It should be noted that the blade thickness variation fields are highly nonhomogeneous
and exhibit multiple, localized anisotropic directions due to the manufacturing process constraints (these
stochastic variations are also technology dependent). If different blade manufacturing technology datasets
are included in the same in a single database, then the resultant stochastic blade thickness variations could
be highly nonGaussian, with multimodal, leptoqurtique, and platiqurtique marginal PDF shapes. More
generally, for modeling the blade geometry variations in space, Ghiocel suggested a 3V-3D stochastic field
model (three variables , in three dimensions x, y, z). For only blade thickness variation, a 1V-2D
stochastic field (one variable, thickness, in two dimensions, blade surface grid) is sufficient. It should be
noted that for multivariate-multidimensional stochastic fields composed of several elementary one-
dimensional component fields, the KL expansion must be applied to the entire covariance matrix of the
stochastic field set that includes the coupling of all the component fields.

One key advantage of the KL expansion over the Choleski decomposition, that makes the KL expansion
(or POD, PCA) more attractive for practice, is that the transformed stochastic space obtained using the
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KL expansion typically has a highly reduced dimensionality when compared with the original stochastic
space. In contrast, the Choleski decomposition preserves the original stochastic space dimensionality. For
this reason, some researchers [29, 30] consider the KL expansion (or POD, PCA) a stochastic reduced-order
model for simulating complex stochastic patterns. The KL expansion, in addition to space dimensionality
reduction, also provides great insight into the stochastic field structure. The eigenvectors of the covariance
matrix play, in stochastic modeling, a role similar to the vibration eigenvectors in structural dynamics;
complex spatial variation patterns are decomposed in just a few dominant spatial variation mode shapes.
For example, blade thickness variation mode shapes provide great insight into the effects of technological
process variability. These insights are very valuable for improving blade manufacturing technology.

The remaining part of this subsection illustrates the application of covariance-based stochastic simu-
lation techniques to generate dynamic stochastic fields. Specifically, the covariance-based methods are
used to simulate the stochastic earthquake ground surface motion at a given site.

To simulate the earthquake ground surface motion at a site, a nonstationary, nonhomogeneous sto-
chastic vector process model is required. For illustrative purposes, it is assumed that the stochastic process
is a nonhomogeneous, nonstationary, 1V-2D space-time Gaussian process (one variable, acceleration in
an arbitrary horizontal direction, and two dimensions for the horizontal ground surface). The space-
time process at any time moment is completely defined by its evolutionary cross-spectral density kernel.
For a seismic acceleration field u(x, t), the cross-spectral density for two motion locations i and k is:

(20.25)

where is the cross-spectral density function for point motions  and , and , j = i,
k is the auto-spectral density for location point j. The function  is the stationary or
“lagged” coherence function for locations i and k. The “lagged” coherence is a measure of the similarity
of the two point motions including only the amplitude spatial variation. Herein, it is assumed that
the frequency-dependent spatial correlation structure of the stochastic process is time-invariant. The
exponential factor  represents the wave passage effect in the direction D
expressed in the frequency domain by a phase angle due to two motion delays at two locations Xi and
Xj. The parameter VD(t) is the apparent horizontal wave velocity in the D direction. Most often in
practice, the nonstationary stochastic models of ground motions are based on the assumption that
the “lagged” coherence and the apparent directional velocity are independent of time. However, in real
earthquakes, the coherence and directional wave velocity are varying during the earthquake duration,
depending on the time arrivals of different seismic wave packages hitting the site from various direc-
tions.

Because the cross-spectral density is Hermitian, either the Choleski decomposition or the KL expansion
can be applied. If the Choleski decomposition is applied, then 

(20.26)

where the matrix  is a complex-valued lower triangular matrix. Then the space-time nonstationary
stochastic process can be simulated using the trigonometric series as the number of frequency components
NF  [21,22]:

, for i  = 1, 2, … NL (20.27)

In the above equation, NL is the number of space locations describing the spatial variation of the motion.
The first phase angle term in Equation 20.27 is computed by

(20.28)
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and the second phase angle term �k , j is a random phase angle uniformly distributed in [0, 2π] (uniform
random distribution is consistent with Gaussian assumption). The above procedure can be used for any
space-time stochastic process. For nonGaussian processes, the procedure can be applied in conjunction
with the inverse probability equation transformation (Equation 20.8 and Equation 20.9).

If the complex-valued coherence function (including wave passage effects) is used, then its eigenfunc-
tions are complex functions. Calculations have shown that typically one to five coherence function modes
are needed to get an accurate simulation of the process [23, 24]. The number of needed coherence
function modes depends mainly on the soil layering stiffness and the frequency range of interest; for
high-frequency components, a larger number of coherence modes are needed.

20.4.1.2 Polynomial Chaos Series-Based Simulation Models

Ghanem and Spanos [15] discussed theoretical aspects and key details of the application Polynomial
Chaos to various problems in their monograph on spectral representation of stochastic functionals.

Polynomial chaos expansion models can be formally expressed as a nonlinear functional of a set of
standard Gaussian variables or, in other words, expanded in a set of stochastic orthogonal polynomial
functions. The most popular polynomial chaos series model is that proposed by Ghanem and Spanos
[15] using a Wiener-Hermite polynomial series:

 (20.29)

The symbol  denotes the polynomial chaoses of order n in the variables .
Introducing a one-to-one mapping to a set with ordered indices denoted by  and truncating the
polynomial chaos expansion after the pth term, Equation 20.29 can be rewritten

(20.30)

The polynomial expansion functions are orthogonal in L2 sense that is, their inner product with respect
to the Gaussian measure that defines their statistical correlation, , is zero. A given truncated
series can be refined along the random dimension either by adding more random variables to the set {zi}
or by increasing the maximum order of polynomials included in the stochastic expansion. The first
refinement takes into account higher frequency random fluctuations of the underlying stochastic process,
while the second refinement captures strong nonlinear dependence of the solution process on this
underlying process. Using the orthogonality property of polynomial chaoses, the coefficients of the
stochastic expansion solution can be computed by

for k = 1, … , K (20.31)

A method for constructing polynomial chaoses of order n is by generating the corresponding multi-
dimensional Wiener-Hermite polynomials. These polynomials can be generated using the partial differ-
ential recurrence rule defined by

(20.32)

The orthogonality of the polynomial chaoses is expressed by the inner product in L2 sense with respect
to Gaussian measure:

(20.33)
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Although popular in the engineering community, the polynomial chaos series may not necessarily be
an efficient computational tool to approximate multivariate nonGaussian stochastic fields. The major
problem is the stochastic dimensionality issue. Sometimes, the dimensionality of the stochastic trans-
formed space defined by a polynomial chaos basis can be even larger than the dimensionality of the
original stochastic space. Nair [42] discussed this stochastic dimensionality aspect related to polynomial
chaos series application. Grigoriu [43] showed that the indiscriminate use of polynomial chaos approx-
imations for stochastic simulation can result in inaccurate reliability estimates. To improve its conver-
gence, the polynomial chaos series can be applied in conjunction with the inverse marginal probability
transformation (Equation 20.8 and Equation 20.9) as suggested by Ghiocel and Ghanem [24].

20.4.2 Two-Level Hierarchical Simulation Models

The two-level hierarchical simulation model is based on the decomposition of the JPDF of the implicit
input-output stochastic system in local or conditional JPDF models. The resulting stochastic local JPDF
expansion can be used to describe, in detail, very complex nonstationary, multivariate-multidimensional
nonGaussian stochastic fields. It should be noted that the local JPDF expansion is convergent in a
probability sense, in contrast with the Wiener-Fourier expansions, which are convergent only in a mean-
square sense.

The stochastic local JPDF basis expansion, or briefly, the local density expansion, can be also viewed
as a Wiener-Fourier series of a composite type that provides both a global approximation and a local
functional description of the stochastic field. In contrast to the classical Wiener-Fourier series that
provides a global representation of a stochastic field by employing global basis functions, as the covariance
kernel eigenfunctions in KL expansion or the polynomial chaoses [16], the stochastic local density
expansion provides both a global and local representation of a stochastic field.

Stochastic local density expansion can be implemented as a two-layer stochastic neural-network, while
Wiener-Fourier series can be implemented as a one-layer stochastic neural-network. It should be noticed
that stochastic neural-network models train much faster than the usual multilayer preceptor (MLP)
neural-networks. Figure 20.1 describes in pictorial format the analogy between stochastic local JPDF
expansion and a two-layer neural-network model.

In the local density expansion, the overall JPDF of the stochastic model is obtained by integration
over the local JPDF model space:

(20.34)

where p(α ) is a continuous distribution that plays the role of the probability weighting function over
the local model space. In a discrete form, the weighting function can be expressed for a number N of
local JPDF models by

(20.35)

in which δ(α − αi) is the Kronecker delta operator. Typically, the parameters αi are assumed or known,
and the discrete weighting parameters P(αi) are the unknowns. The overall JPDF of the stochastic model
can be computed in the discrete form by

(20.36)
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The parameters �i can be represented by the second-order statistics (computed by local averaging) of
the local JPDF models. Thus, the overall JPDF expression can be rewritten as

(20.37)

where  are the mean vector and covariance matrix, respectively, of the local JPDF model i.
Also, , and . Typically, the types of the local JPDF are assumed
and the probability weights are computed from the sample datasets. Often, it is assumed that the local
JPDFs are multivariate Gaussian models. This assumption implies that the stochastic field is described
locally by a second-order stochastic field model. Thus, nonGaussianity is assumed only globally. It is
possible to include nonGaussianity locally using the marginal probability transformation of the local JPDF.

The local JPDF models are typically defined on partially overlapping partitions within stochastic spaces
called soft partitions. Each local JPDF contributes to the overall JPDF estimate in a localized convex
region of the input space. The complexity of the stochastic field model is associated with the number of
local JPDF models and the number of stochastic inputs that define the stochastic space dimensionality.
Thus, the stochastic model complexity is defined by the number of local JPDFs times the number of
input variables. For most applications, the model implementations that are based on a large number of
highly localized JPDFs are not good choices because these models have high complexity. For high
complexities, we need very informative data to build the locally refined stochastic models. Simpler models
with a lesser number of JPDF models have a much faster statistical convergence and are more robust.
Thus, the desire is to reduce model complexity at an optimal level.

The complexity reduction of the stochastic field model can be accomplished either by reducing the
number of local JPDFs or by reducing their dimensionality. Complexity reduction can be achieved using
cross-validation and then removing the local JPDF that produces the minimum variation of the error
estimate or the model likelihood estimate. We can also use penalty functions (evidence functions) that

FIGURE 20.1  Analogy betweeen the local JPDF expansion and a two-layer stochastic neural network model.
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reduce the model complexity by selecting the most plausible stochastic models based on the evidence
coming from sample datasets [44].

Alternatively, we can reduce the model complexity by reducing the dimensionality of local JPDF models
using local factor analyzers. Local factor analysis reduces the number of local models by replacing the local
variables in the original space by a reduced number of new local variables defined in local transformed spaces
using a stochastic linear space projection. If deterministic projection instead of stochastic projection is applied,
the factor analysis coincides with PCA. However, in practice, especially for high-dimensional problems, it is
useful to consider a stochastic space projection by adding some random noise to the deterministic space
projection. Adding noise is beneficial because instead of solving a multidimensional eigen-problem for decom-
posing the covariance kernel, we can implement an extremely fast convergent iterative algorithm for computing
the principal covariance directions. The combination of the local JPDF expansion combined with the local
probabilistic PCA decomposition is called herein the local PPCA expansion. Figure 20.2 shows the simulated
sample data and the local PPCA models for a complex pattern trivariate stochastic field.

It should be noted that if the correlation structure of local JPDF models is ignored, these local
JPDFs lose their functionality to a significant extent. If the correlation is neglected, a loss of infor-
mation occurs, as shown in Figure 20.3. The radial basis functions, such standard Gaussians, or other
kernels ignore the local correlation structure due to their shape constraint. By this they lose accuracy for

FIGURE 20.2   Sample data and local PPCA models for a trivariate stochastic field.

FIGURE 20.3   Loss of information if the local correlation structure is ignored. 
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modeling a complex stochastic field. One way to see radial basis function expansions is to look at them as
degenerated local JPDF models. These radial functions are commonly used in a variety of practical applica-
tions, often in the form of the radial basis function network (RBFN), fuzzy basis function network (FBFN),
and adaptive network-based fuzzy inference systems (ANFIS). Figure 20.4 compares the RBFN model with
the local PPCA expansion model. The local PPCA expansion model is clearly more accurate and better
captures all the data samples, including those that are remote in the tails of the JPDF. For a given accuracy,
the local PPCA expansion needs a much smaller number of local models than the radial basis function model.
As shown in the figure, the local PPCA models can elongate along long data point clouds in any arbitrary
direction. The radial basis functions do not have this flexibility. Thus, to model a long data point cloud, a
large number of overlapping radial basis functions are needed. And even so, the numerical accuracy of radial
basis function expansions may still not be as good as the accuracy of local PPCA expansions with just few
arbitrarily oriented local point cloud models. It should be noted that many other popular statistical approx-
imation models, such as Bayesian Belief Nets (BNN), Specht’s Probability Neural Network (PNN), in addition
to ANFIS, RBF, and FBF networks, and even the two-layer MLP networks, have some visible conceptual
similarities with the more refined local PPCA expansion.

FIGURE 20.4  Local PPCA expansion model versus RBF network model. a) decomposition of sample space in local
stochastic models b) computed JPDF estimates.
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The stochastic local PPCA expansion is also capable of including accurately local, nonuniform stochastic
variations. Figure 20.5 illustrates this fact by comparing the local PPCA expansions for two sample datasets
that are identical except for a local domain shown at the bottom left of the plots. For the first dataset (left
plots), the local variation was much smaller than for the second dataset (right plots). As seen by comparing
the plots, the local PPCA expansion captures well this highly local variability of probabilistic response.

The decomposition of stochastic parameter space in a set of local models defined on soft partitions offers
several possibilities for simulating high-dimensional complex stochastic fields. This stochastic sample space
decomposition in a reduced number of stochastic local models, also called states, opens up a unique avenue
for developing powerful stochastic simulation techniques based on stochastic process or field theory, such
as dynamic Monte Carlo. Dynamic Monte Carlo techniques are discussed in the next section.

20.5 Simulation in High-Dimensional Stochastic Spaces

In simulating random samples from a joint probability density g(x), in principle there are always ways
to do it because we can relate the multidimensional joint density g(x) to univariate probability densities
defined by full conditional densities :

(20.38)

Unfortunately, in real-life applications, these (univariate) full conditional densities are seldom available
in an explicit form that is suitable to direct sampling. Thus, to simulate a random sample from g(x), we
have few choices: (1) use independent random samples drawn from univariate marginal densities (static,
independent sampling, SMC) to build the full conditionals via some predictive models; or (2) use inde-
pendent samples from trial univariate marginal and conditional densities (sequential importance sampling,
SIS), defined by the probability chain rule decomposition of the joint density, and then adaptively weight
them using recursion schemes; or (3) use independent samples drawn from the univariate full conditional
densities to produce spatially dependent samples (trajectories) of the joint density using recursion schemes
that reflect the stochastic system dynamics (dynamic, correlated sampling, DMC).

For multidimensional stochastic fields, the standard SMC sampling techniques can fail to provide good
estimators because their variances can increase sharply with the input space dimensionality. This variance
increase depends on stochastic simulation model complexity. For this reason, variation techniques are required.
However, classical techniques for variance reductions such as stratified sampling, importance sampling, direc-
tional sampling, control variable, antithetic variable, and Rao-Blackwellization methods are difficult to apply
in high dimensions.

For simulating complex pattern, high-dimensional stochastic fields, the most adequate techniques are
the adaptive importance sampling techniques, such as the sequential importance sampling with inde-
pendent samples, SIS, or with correlated samples, DMC. Currently, in the technical literature there exists
a myriad of recently developed adaptive, sequential, single sample-based or population-based evolution-
ary algorithms for high-dimensional simulations [6, 45]. Many of these techniques are based on con-
structing a Markov chain structure of the stochastic field. The fundamental Markov assumption of one-
step memory significantly reduces the chain structures of the full or partial conditional densities, thus
making the computations affordable. In addition, Markov process theory is well-developed so that reliable
convergence criteria can be implemented.

20.5.1 Sequential Importance Sampling (SIS)

SIS is a class of variance reduction techniques based on adaptive important sampling schemes [45, 46]. A useful
strategy to simulate a sample of joint distribution is to build up a trial density sequentially until it converges to
the target distribution. Assuming a trial density constructed as

g x x x x xj M j j( | , , , , , )K K+ −1 1 1

        

g g x x g x x xK j j

j

M

( ) ( , , ) ( | , , )x = = −
=

∏1 1 1

1

K K

        g g x g x x g x x xN N N( ) ( ) ( | ) ( | , )x = −1 1 2 2 1 1 1K K

1180_C20.fm  Page 21  Wednesday, October 27, 2004  8:04 PM



20-22 Engineering Design Reliability Handbook

and using the same decomposition for the target density , the
importance sampling weight can be computed recursively by

(20.39)

An efficient SIS algorithm is based on the following recursive computation steps, using an improved
adaptive sampling weight [6, 46]:

Step 1: Simulate  from , let 
Step 2: Compute the adaptive sampling weight by

(20.40)

The entire sample of the input x is adaptively weighted until the convergence of the trial density to the
target density is reached.

An important application of the SIS simulation technique is the nonlinear filtering algorithm based
on the linear state-space model that is very popular in the system dynamics and control engineering
community. In this algorithm, the system dynamics consist of two major coupled parts: (1) the state
equation, typically represented by a Markov process; and (2) the observation equations, which are usually
written as

(20.41)

where yt are observed state variables and xt are unobserved state variables. The distribution of xt are
computed using the recursion:

(20.42)

In applications, the discrete version of this model is called the Hidden Markov model (HMM). If the
conditional distributions qt and ft are Gaussian, the resulting model is the called the linear dynamic model
and the solution can be obtained analytically via recursion and coincides with the popular Kalman filter
solution.

To improve the statistical convergence of SIS, we can combine it with resampling techniques, sometimes
called SIR, or with rejection control and marginalization techniques.

20.5.2 Dynamic Monte Carlo (DMC)

DMC simulates realizations of a stationary stochastic field (or process) that has a unique stationary prob-
ability density identical to the prescribed JPDF. Instead of sampling directly in the original cartesian space
from marginal distributions, as SMC does, DMC generates a stochastic trajectory of spatially dependent
samples, or a random walk in the state-space (or local model space). Figure 20.6 shows the basic conceptual
differences between standard SMC and DMC. The Gibbs sampler and Metropolis-Hastings algorithms
presented in Section 20.3.2 are the basic ingredients of dynamic Monte Carlo techniques.

The crucial part of the DMC is how to invent the best ergodic stochastic evolution for the underlying
system that converges to the desired probability distribution. In practice, the most used DMC simulation
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models are based on irreducible, aperiodic, reversible stationary Markov process models. The DMC
simulation based on Markov process models is called Markov Chain Monte Carlo simulation, or briefly
MCMC. Higher-order Markov chains or nonMarkovian are more difficult to implement. When using
MCMC, a key modeling aspect is how to ensure that the samples of the chain are ergodic, especially
when there is a chance that they can be stuck in a local energy minimum. The principal drawback of
MCMC is that it has only local moves along its random path. This leads to a very slow convergence to
equilibrium or, worse, to a stop in a local state. 

A good strategy for improving MCMC movement in space is to combine the local powerful prop-
erties of MCMC with the global updating properties of molecular dynamics simulation using a
Hamiltonian formulation of system dynamics. This combination is based on the Hamiltonian Markov
Chain Monte Carlo (H-MCMC) algorithm [47]. The Hamiltonian MCMC is also called the Hybrid
Monte Carlo (HMC). As an alternate to H-MCMC, an MCMC with random jumps has been
developed [48].

Herein we describe briefly the H-MCMC algorithm. This algorithm is the preferred MCMC algorithm
for high-dimensional stochastic simulation problems. The H-MCMC simulation algorithm can be effi-
ciently implemented in conjunction with conditional PPCA expansion models. Hanson [47] claims in
his research paper that “the efficiency of Hamiltonian method does not drop much with increasing
dimensionality.” Hanson has used H-MCMC for stochastic problems with a parameter space size up to
128 dimensions.

The H-MCMC algorithm is used to simulate a random sample of a canonical (or Gibbs, or Boltzmann)
JPDF of the form:

 (20.43)

This distribution is specific to Gibbs fields or equivalently to Markov fields [49]. In the above equation,
H(x) is the Hamiltonian of the dynamic system.

In the Hamiltonian formulation, the evolution of the dynamic system is completely known once the
total energy or the Hamiltonian function in generalized coordinates, H(q, p), is defined:

(20.44)

FIGURE 20.6  Conceptual differences between static Monte Carlo and dynamic Monte Carlo.
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where q and p are the vectors of the generalized coordinates and generalized momenta (in the phase
space), mi are the masses associated with the individual particles of the system, and E(q) is the potential
energy that ensures a coupling between the particles. System dynamics is represented by a trajectory in
the phase space. For any arbitrary evolutionary function f(q, p), its rate of change is expressed by its
time derivative:

(20.45)

For stationary stochastic dynamics, the Hamiltonian conserves. Now, using the molecular dynamics
(MD) approach, we can discretize the Hamiltonian function evolution using finite difference equations
over the time chopped in small increments. The most used implementation is the leap-frog scheme
[47]:

(20.48)

The leap-frog scheme is time reversible and preserves the phase space volume. The resulting Hamiltonian-
MCMC algorithm is capable of having trajectory jumps between different iso-energy surfaces and con-
verges to a target canonical (or Gibbs, Boltzmann) distribution.

Figure 20.7 and Figure 20.8 show the application of H-MCMC to a simple bivariate stochastic field
model composed of three overlapping local Gaussians. Figure 20.7 shows a simulated trajectory using
the H-MCMC. The random samples were obtained by drawing sample data at each random walk step.
Figure 20.8 compares the target JPDF and the estimated JPDF. The estimated JPDF is computed from
the 250 random samples drawn at each step of the Markov chain evolution. It can be observed that there
is a visible spatial correlation between the generated random samples. In practice, the random samples
should be drawn periodically after a large number of random walk steps, so that the spatial correlation
is lost. This improves considerably the convergence in probability of the H-MCMC simulation.

An extremely useful application of the DMC simulation is the stochastic interpolation for stochastic
fields with missing data, especially for heavy-tailed nonGaussianity. DMC can be also used to simulate
conditional-mean surfaces (response surfaces). Figure 20.9 illustrates the use of H-MCMC in conjunc-
tion with the local PPCA expansion for a univariate highly nonGaussian stochastic field with unknown
mean. It should be noted that the quality of estimation depends on the data density in the sample space.
Figure 20.10 shows another simple example of application of H-MCMC for simulating a univariate
stochastic field with known mean using different persistence parameters (that define the magnitude of
fictitious generalized momenta). The figure shows the H-MCMC samples and the exact (given) and
estimated mean curves. By comparing the two plots in Figure 20.10, it should be noted that larger
persistence parameters (larger generalized momenta) improve the simulation results for the mean curve
in remote regions where data density is very low. Larger fictitious momenta produce larger system
dynamics and, as a result, increase the variance and reduce the bias of the mean estimates. It appears
that larger momenta in H-MCMC simulations are appropriate for probability estimations in the dis-
tribution tails of the joint distributions. Thus, DMC can be also employed to establish confidence
bounds of stochastically interpolated surfaces for different probability levels. From the figure we can
note that larger momenta provide less biased confidence interval estimates in the remote area of the
distribution tails.
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Other techniques to accelerate the MCMC convergence are simulated tempering and annealing.
Simulated tempering and simulated annealing are popular MCMC applications of stochastic simulation
to optimization under uncertainty problems. These techniques, which are described in many textbooks,
are not discussed herein. This is not to shadow their merit.

20.5.3 Computing Tail Distribution Probabilities

As discussed in the introductory section of this chapter, stochastic simulation can be applied to either
(1) simulate random quantities or (2) compute expectations. For probabilistic engineering analyses, both
applications of stochastic simulation are of practical interest. For reliability and risk assessment analyses,
the second application of simulation is used.

This section addresses the use of stochastic simulation to compute expectations. Only selective aspects
are reviewed herein. The focus is on solving high-complexity stochastic problems.

FIGURE 20.7  The prescribed stochastic model and the H-MCMC simulated random samples (drawn point data
and random walk).
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Expectations can include probability integrals for computing marginal distributions, evidences (nor-
malization constant for the product of likelihood and prior in Bayes theorem), statistical moments, and
expectation of functions. Thus, in most stochastic problems, the numerical aspect consists of computing
the expected value of a function of interest f(x) with respect to a target probability density g(x), where x
is the stochastic input. Assuming that are an independent identically distributed sample set
from g(x), then the Monte Carlo estimator  is computed by simple statistical averaging over the entire
sample set:

(20.49)

The estimator  is unbiased and has the variance

(20.50)

FIGURE 20.8  Target JPDF versus estimated JPDF (using 250 samples drawn at each step).
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implying that the sampling error, (i.e., standard deviation) of  is O( ) independent of stochastic
space dimensionality. Thus, the MC simulation estimator always converges with a constant rate that
is proportional to the square-root of the number of samples. This is a key property of the standard
Monte Carlo estimator that makes the SMC simulation method so popular in all engineering fields.

Many textbooks provide suggestions on how to select the required number of samples to estimate
the probability of failure for a given percentage error independent of an assumed probability estimate.
If the mean probability estimate  has a normal distribution, the number of required samples for the
confidence 1 − α/2 is given by

(20.51) 

where t is the T or Student distribution with n  − 1 degrees of freedom.
Thus, it appears that if we respect the above equation and select a small error, then we have nothing

to worry about. This is not necessarily true, especially for high-dimensional problems that involve non-
Gaussian stochastic fields (or responses). The delicate problem is that for standard stochastic simulation
based on SMC, although the convergence rate is independent of space dimensionality, the probability
estimate variance is not independent of space dimensionality. In fact, it can increase dramatically with
dimensionality increase. The probability estimate variance increase affects most severely the tail proba-
bility estimates (low and high fractiles) that typically are dependent on localized probability mass dis-
tributions in some remote areas of the high-dimensional space.

Figure 20.11 shows a simple example of the increase of probability estimate variance with space dimen-
sionality. Consider the computation of failure probability integral, I, defined by a volume that is internal
to a multivariate standard Gaussian function: 

(20.52)

FIGURE 20.9  Stochastic Interpolation Using A Local PPCA Expansion Model via H-MCMC Simulation.
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Figure 20.11 shows the plot of the coefficient of variation (c.o.v.) and the 90% (normalized) confidence
interval (measure of the sampling error) as a function of input space dimension N that varies up to 10.
For a number of 10,000 random samples, the c.o.v. of the failure probability estimate increases from
about 3% for one dimension to about 87% for ten dimensions.

Thus, for the (random) point estimates of failure probabilities that we are typically getting from our
reliability analyses, the use of Equation 20.51 for determining the number of required random samples
can be erroneous, and possibly unconservative, as sketched in Figure 20.12. The required number of
samples increases with the complexity of the stochastic simulation model, namely with its dimensionality
and its nonGaussianity (or nonlinearity of stochastic dependencies).

20.5.4 Employing Stochastic Linear PDE Solutions

A special category of stochastic fields comprises the physics-based stochastic fields. These physics-based
fields are defined by the output of computational stochastic mechanics analyses. The physics-based
stochastic fields, or stochastic functionals, can be efficiently decomposed using stochastic reduced-
order models (ROM) based on the underlying physics of the problem. This physics is typically
described by stochastic partial-differential equations. Stochastic ROMs are computed by projecting

FIGURE 20.10  Effects of persistance (fictitious momenta) on the H-MCMC stochastic simulations; a) persistence
parameter is 0.95, b) persistence parameter is 0.98.
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the original stochastic physical field on reduced-size stochastic subspaces. Iterative algorithms using
stochastic preconditioning can be employed in conjunction with physics-based stochastic ROM models.

The most used physics-based stochastic ROM models are those based on stochastic projections in the
preconditioned eigen subspace, Taylor subspace, and Krylov subspace. These stochastic subspace projec-
tions are accurate for linear stochastic systems (functionals, fields) [42]. Nonlinear variations can be
included by stochastically preconditioning Newton-type iterative algorithms. Both approximate and exact
solvers can be used as preconditioners in conjunction with either stochastic ROM or full models. The
key ingredients of the stochastic ROM implementations are (1) fast-convergent stochastic subspace
expansions, (2) stochastic domain decomposition, (3) fast iterative solvers using stochastic precondition-
ers, and (4) automatic differentiation to compute function derivatives.

A useful industry application example of the stochastic ROM based on a eigen subspace projection is
the Subset of Nominal Method (SNM) developed by Griffin and co-workers [50] for computing the
mistuned (mode-localization) responses of jet engine bladed-disks due to random manufacturing devi-
ations. The SNM approach is exact for proportional small variations of the linear dynamic system mass

FIGURE 20.11  Effects of stochastic space dimensionality on the computed probability estimates; a) Coefficient of
variation, b) Confidence interval.
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and stiffness matrices. Ghiocel [36] suggested combining the SNM approach with the KL expansion for
simulating mistuned responses more realistically by including the effects of nonproportional blade
variations due to manufacturing. The main idea is to use the KL expansion to reduce the stochastic input
dimensionality and then use SNM iteratively to reduce the stochastic dynamic system dimensionality.

The stochastic field projections in the Taylor and Krylov subspaces can be very efficient for both static and
dynamic stochastic applications. Figure 20.13 illustrates the application of the Krylov subspace expansion for
computing the vibratory mistuned response of a 72-blade compressor engine blisk system. The system
stochasticity is produced by the random variations in airfoil geometry due to manufacturing. Figure 20.13
shows the blade tip stochastic responses in frequency domain (transfer functions) for a given engine order
excitation [34, 51]. The stochastic Krylov expansion requires only 14 basis vectors to converge. This means
that only a reduced-size system of 14 differential equations must be solved at each stochastic simulation step.

The application of physics-based stochastic ROMs to stochastic simulation is limited to stochastic
fields that can be described by known linear partial differential equations. It is obvious that the application
of these stochastic ROM to computational stochastic mechanics problems is straightforward, as presented
by Nair [42]. However, for stochastic fields that have an unknown functional structure, the physics-based
stochastic ROMs are not directly applicable.

20.5.5 Incorporating Modeling Uncertainties

Engineering stochastic simulation procedures should be capable of computing confidence or variation
bounds of probability estimates. The variation of probability estimates is generated by the presence of
epistemic or modeling uncertainties due to (1) a lack of sufficient collection of data (small sample size issue);
(2) nonrepresentative collection of statistical data with respect to the entire statistical population character-
istics or stochastic system physical behavior (nonrepresentative data issue); (3) a lack of fitting the stochastic
model with respect to a given statistical dataset, i.e., a bias is typically introduced due to smoothing (model
statistical-fitting issue); and (4) a lack of accuracy of the prediction model with respect to real system physical
behavior for given input data points, i.e., a bias is introduced at each predicted data point due to prediction
inaccuracy (model lack-of-accuracy issue).

FIGURE 20.12  Space dimensionality effects on the accuracy of the computed probability estimates.
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The first three modeling uncertainty categories are all associated with statistical modeling aspects. The
fourth modeling uncertainty category is different. It addresses the prediction uncertainty due to the accuracy
limitation of our computational models. In addition to these four uncertainty categories containing infor-
mation that are objective in nature, there is also an uncertainty category related to the subjective information
coming from engineering experience and judgment. Engineering judgment is an extremely useful source of
information for situations where only scarce data or no data is available.

The above categories of uncertainties are described in detail in other chapters of the book. The purpose
of mentioning these categories is to highlight the necessity of including them in the stochastic simulation
algorithms. Unfortunately, this also increases the overall dimensionality of the stochastic simulation
problem. Strategies to reduce the overall stochastic space dimensionality are needed [52].

20.6 Summary

Stochastic simulation is a powerful engineering computational tool that allows accurate predictions for
complex nondeterministic problems. The most important aspect when employing simulation is to ensure
that the underlying stochastic model is compatible with the physics of the problem. By oversimplifying
stochastic modeling, one can significantly violate the physics behind stochastic variabilities.

FIGURE 20.13  Convergence of stochastic Krylov subspace expansion for the random mistuned response of the
blades compressor engine blisk; solid line is the full-model solution and dashed line is the reduced-model solution.
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Because the stochastic simulation is an almost endless subject, the focus of this chapter is on the
conceptual understanding of these techniques, and not on the implementation details. This chapter
reviews only the stochastic simulation techniques that in the author’s opinion are the most significant
for engineering design applications.

The chapter describes various stochastic simulation models — from simple, one-dimensional random
variable models to complex stochastic network-based models. Significant attention is given to the decom-
position of stochastic fields (or functionals) in constituent basis functions. Advances of stochastic func-
tional analysis for developing efficient simulation techniques based on stochastic reduced-order models
are included.

Another topic of a special attention is the stochastic simulation in high-dimensional spaces. The chapter
reviews recent developments in stochastic simulation in high-dimensional spaces based on sequential
importance sampling and dynamic simulation via a Hamiltonian formulation. Other key topics that are
only briefly discussed include the computation of tail probabilities and the incorporation of epistemic
or modeling uncertainties in simulation.

References

1. Hammersley, J.M. and Handscomb, D.C., Monte Carlo Methods, Methuen and Co. Ltd., London,
1964.

2. Knuth, D.C., The Art of Computer Programming, Addison-Wesley, Reading, MA, 1969.
3. Vaduva, I., Simulation Models for Computer Applications, The Series Mathematical Basis of Opera-

tional Research, Technical Editure, Bucharest, 1977.
4. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in FORTRAN:

The Art of Scientific Computing, Cambridge University Press, New York, 1992.
5. Law, A.M. and Kelton, W.D., Simulation Modeling and Analysis, McGraw-Hill, New York, 1991.
6. Gamerman, D., “Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference,” Text in

Statistical Science, Chapman & Hall, New York, 1997.
7. Rubin, D.B., Using SIR Algorithm to Simulate Posterior Distributions (with discussion), in Bayesian

Statistics, Vol. 3, Oxford University Press, Oxford, England,  395–402, 1987.
8. Gilks, W.R. and Wild, P., Adaptive Rejection Sampling for Gibbs Sampling, Applied Statistics, 41,

337–348, 1992.
9. Box, G.E. and Muller M.E., A Note of the Generation of Random Normal Deviates, Annals of

Mathematical Statistics, 29, 610–611, 1958.
10. Butcher, J.C., Random Sampling from the Normal Distributions, Computing Journal, 3, 1961.
11. Grigoriu M., Applied Non-Gaussian Processes, Prentice Hall, Englewood Cliffs, NJ, 1995.
12. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., Equations of State

Calculations by Fast Computing Machines, Journal of Chemical Physics, 21(6), 1087–1091.
13. Geman, S. and Geman, D., Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration

of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741, 1984.
14. Ghiocel, D.M., Stochastic Field Models for Advanced Engineering Applications, 42nd AIAA/ASME/

ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA/ASCE/ASME Non-
Deterministic Approaches Forum, Seattle, WA, April 16–19, 2001.

15. Ghanem, R.G. and Spanos, P.D., Stochastic Finite Elements: A Spectral Approach, Springer-Verlag,
Heidelberg, 1991.

16. Wiener, N., The Homogenous Chaos, American Journal of Mathematics, 60, 897–936, 1938.
17. Pearson, K., On Lines and Planes of Closest Fit to Systems of Points in Space, Philosophical Magazine,

2, 559–572, 1958.
18. Everitt, B.S. and Dunn, G., Applied Multivariate Data Analysis, Arnold, Oxford University Press,

London, 2001.
19. Grigoriu, M., Stochastic Calculus, Birkhauser, Boston, MA, 2002.

1180_C20.fm  Page 32  Wednesday, October 27, 2004  8:04 PM



Stochastic Simulation Methods for Engineering Predictions 20-33

20. Yamazaki, K. and Shinozuka, M., Safety Evaluation of Stochastic Systems by Monte Carlo Simulation
9th SMiRT Conference, Volume M, Lausanne, August 17–21, 1987.

21. Deodatis, G., Non-Stationary Stochastic Vector Processes: Seismic Ground Motion Applications,
Probabilistic Engineering Mechanics, 11, 149–168, 1996.

22. Shinozuka, M. and Deodatis, G., Stochastic Process Models for Earthquake Ground Motion, Journal
of Probabilistic Engineering Mechanics, 3, 191–204, 1988.

23. Ghiocel, D.M., Uncertainties of Seismic Soil-Structure Interaction Analysis: Significance, Modeling
and Examples, Invited Paper at the US–Japan Workshop on Seismic SSI, Organized by the NSF/USGS,
Menlo Park, CA,  September 22–24, 1998.

24. Ghiocel, D.M. and Ghanem, R.G., Stochastic Finite Element Analysis for Soil-Structure Interaction,
Journal of Engineering Mechanics, ASCE, 128(1), January 2002.

25. Shinozuka, M., Stochastic Fields and Their Digital Simulation, in Stochastic Methods of Structural
Dynamics, Schueller, G.I. and Shinozuka, M., Eds., Martinus Nijhoff, Dordrecht, 1987, 93–133.

26. Ghiocel, D.M. and Trandafir, R., Application of Space-Time Stochastic Processes in Load Modeling
for Structural Design of Special Facilities, 6th National Symposium on Informatics in Civil Engineering,
Timisoara, June 1988 (in Romanian).

27. Ghiocel, D.M. and Ghiocel, D., Structural Behavior of Large Cooling Towers on Wind Load, Scientific
Bulletin of Civil Engineering, Vol. 1, ICB, Bucharest, 1988 (in Romanian).

28. Ghiocel, D.M. and Ghiocel, D., Stochastic Modeling and Simulation of Wind Fluctuating Pressure
Field on Large Diameter Cooling Tower Structures, ASCE Probabilistic Structural Mechanics Confer-
ence, Sandia National Laboratories, Alburquerqe, NM, July 24–26, 2004 (submitted).

29. Romanowski, M., Reduced Order Unsteady Aerodynamic and Aeroelastic Models Using Karhunen-
Loeve Eigenmodes, AIAA Journal, Paper AIAA 96–3981, 1996.

30. Thomas, J.P., Dowell, E.H., and Hall, K.C., Three Dimensional Transonic Aeroelasticity Using Proper
Orthogonal Decomposition-Based Reduced Order Models, Journal of Aircraft, 40(3), 544–551, 2003.

31. Ghiocel, D.M., Refined Stochastic Field Models for Jet Engine Vibration and Fault Diagnostics,
Proceedings of International Gas Turbine & Aeroengine Congress, 2000 TURBO EXPO, Paper 2000-
GT-654, Munich, Germany, May 8–11, 2000.

32. Ghiocel, D.M., A New Perspective on Health Management Using Stochastic Fault Diagnostic and
Prognostic Models, International Journal of Advanced Manufacturing Systems, Special Issue on “Non-
Deterministic Methods for Design and Manufacturing Under Uncertainties,” Vol. 4, Issue 1, October
2001.

33. Hilbert, G. and Blair, A., Accuracy of Forced Response Prediction of Gas Turbine Rotor Blades, 4th
National Turbine Engine HCF Conference, Monterey, CA, March 6–9, 1999.

34. Ghiocel, D.M., Mistuning Analysis of Bladed-Disks, in STI BLADE-GT Engineering Research Report
for AFRL/PRT at Wright-Patterson Air Force Base, Proprietary Information, USAF Contract F33615-
96-C-2678, Dayton, OH, June 2002.

35. Brown J. and Grandhi, R.V., Probabilistic Analysis of Geometric Uncertainty Effects on Blade-
Alone Forced Response, Proceedings of the 2004 ASME Turbo Expo, IGTI 2004, Vienna, June 14–17,
2004.

36. Ghiocel, D.M., Critical Probabilistic Modeling and Implementation Issues for Geometry Mistuning
in Engine Blisks, presentation at the 6th Annual FAA/AF/NASA/Navy Workshop on the Application
of Probabilistic Methods to Gas Turbine Engines, Solomon Island, MD, March 18–20, 2003.

37. Blair A. and Annis, C., Development of Probabilistic Methods for Campbell Diagram Frequency
Placement, presentation at the 7th National Turbine Engine High Cycle Fatigue Conference, Monterey,
CA, April 16–19, 2003.

38. Ghiocel, D.M., Stochastic Modeling of Airfoil Thickness Spatial Variability due to Manufacturing
Process, presented at the 6th National Turbine Engine High Cycle Fatigue Conference, Jacksonville,
FL, March, 5–8, 2001.

39. Ghiocel, D.M., Stochastic Field Models for Aircraft Jet Engines, Journal of Aerospace Engineering,
ASCE, Special Issue on Reliability of Aerospace Structures, Vol. 14, No. 4, October 2001.

1180_C20.fm  Page 33  Wednesday, October 27, 2004  8:04 PM



20-34 Engineering Design Reliability Handbook

40. Griffiths, J.A. and Tschopp, J.A., Selected Topics in Probabilistic Gas Turbine Engine Turbomachinery
Design, in CRC Press Engineering Design Reliability Handbook, Nikolaidis, E., Ghiocel, D.M., and
Singhal, S., Eds., CRC Press, Boca Raton, FL, 2004.

41. Casenti, B., Probabilistic Blade Design, United Technologies — Pratt and Whitney Final Report,
USAF Contract F33615-98-C-2928, June 2003.

42. Nair, P.B., Projection Schemes in Stochastic Finite Element Analysis, in CRC Press Engineering Design
Reliability Handbook, Nikolaidis, E., Ghiocel, D.M., and Singhal, S., Eds., CRC Press, Boca Raton,
FL, 2004.

43. Grigoriu, M., Formulation and Solution of Engineering Problems Involving Uncertainty, Invited
presentation at the Biannual SAE Probabilistic Method Committee Meeting, Detroit, October 7–9,
2003.

44. McKay, D.J.C., Bayesian Interpolation, Neural Computation, 1992.
45. Robert, C.P. and Casella, G., Monte Carlo Statistical Methods, Springer-Verlag, Heidelberg, 1999.
46. Liu, J., Monte Carlo Strategies in Scientific Computing, Spring Series in Statistics, Springer-Verlag,

Heidelberg, 2001.
47. Hanson, K.M., Markov Chain Monte Carlo Posterior Sampling with the Hamilton Method, Pro-

ceedings SPIE 4322, Medical Image: Image Processing, Sonka, M. and Hanson, M.K., Eds., San Diego,
CA, 2001, 456–467.

48. Green, P.J., Monte Carlo Methods: An Overview, Invited Paper, Proceedings of the IMA Conference
on Complex Stochastic Systems and Engineering, Leeds, U.K., September 1993.

49. Fismen, M., Exact Simulation Using Markov Chains, M.Sc. thesis, Norvegian Institute of Technology
and Science, Trondheim, December 1997.

50. Yang, M.-T. and Griffin, J.H., A Reduced Order Model of Mistuning Using a Subset of Nominal
Modes, Journal of Engineering for Gas Turbines and Power, 123(4), 893–900, 2001.

51. Keerti, A., Nikolaidis, E., Ghiocel, D.M., and Kirsch, U., Combined Approximations for Efficient
Probabilistic Analysis of Structures, AIAA Journal, 2004.  

52. Ghiocel, D.M., Combining Stochastic Networks, Bayesian Inference and Dynamic Monte Carlo for
Estimating Variation Bounds of HCF Risk Prediction, presentation at the 7th National Turbine Engine
High Cycle Fatigue Conference, Monterey, CA, April 16–19, 2003.

1180_C20.fm  Page 34  Wednesday, October 27, 2004  8:04 PM


