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ABSTRACT: The aim of this paper is to (i) discuss the significance of different uncertainty sources on seismic 
soil-structure interaction (SSI), (ii) review the engineering current practice for assessing SSI uncertainty effects 
using probabilistic models and finally (iii) propose a new procedure for an accurate probabilistic SSI analysis. 
The intention of the paper is not to address all significant SSI aspects, but only few of these which based on 
author's opinion are not consistently reflected by the current state-of-engineering practice. Several shortcomings 
of the current engineering practice for assessing structural risks for critical facilities are pointed out. The 
proposed procedure uses for the idealization of seismic input and soil properties stochastic field models. Its 
implementation offers a significant advancement for performing probabilistic seismic SSI analyses. 

INTRODUCTION 

The factors influencing SSI are a myriad. This is 
due to the complexity of seismic SSI phenomenon. 
A short list of major factors influencing SSI may 
include: 

Wave propagation: 
control motion, including intensity, 
directionality, frequency content 
wave composition, including internal waves, P 
and S, with surface waves, Rayleigh 
and Love, and other wave types 
spatial variation of ground motion with depth 
and distance, including motion 
incoherency and wave passage effects 
soil nonlinear behavior as a function of shear 
strain in soil, soil stability 

Soil-structure interaction: 
wave scattering effects or kinematic interaction 
dynamic characteristics of structure-foundation- 
soil ensemble, including 

embedment effects on system stiffness and 
vibration energy radiation 
structure nonlinear behavior, which may be 
more ductile or brittler, including 
stiffness degradations and damping increase 
local contact interface nonlinearities between 
soil and foundation 

SSI response depends drastically on both the 
seismic environment and structure-foundation-soil 
ensemble dynamic characteristics. 

The seismic SSI uncertainties are usually 
divided in two major source types of uncertainties, 
namely: (i) uncertainties due to inherent 
randomness in natural phenomena induced by 
earthquakes and in material properties, and (ii) 
uncertainties due to modeling uncertainties in SSI 
models and assumptions. 

To illustrate the contributions of the two types 
of uncertainty sources, the probabilistic seismic 
response of a nuclear power plant (NPP) is 
considered (Ghiocel et al., 1994). Figure 1 shows 
the simulated in-structure spectra for the Reactor 
Building (RB), at the basemat and the top of the 



containment, and for the Auxiliary Building (AB), 
at the roof level. The SSI effects are larger for the 
RB than for AB. The random variability in the 
spectral response is higher at the top elevations than 
for the basemat. This indicates that the SSI 
uncertainties are mostly propagated through the 
rocking motion than through the horizontal motion. 
The contributions of two types of uncertainty on 
seismic response of the two NPP buildings 'are 
quantified in Figure 2. The two spectral curves 
correspond to coefficient of variation curves which 
were computed assuming that the uncertainties are 

There are two major avenues for improving SSI 
modeling uncertainties: (i) improve deterministic 
SSI prediction models and (ii) improve probabilistic 
models. These two avenues are discussed in the next 
two sections. 

DETERMINISTIC PREDICTION MODELS 

There are many significant SSI aspects with 
significant impact on accuracy of seismic structural 
predictions which are not appropriately considered 
by the present state-of-engineering practice. Herein, 
only few of these aspects, subjectively selected, are 
addressed. 

Table 1. Structural Fragility Analysis Results for the investigated NPP 

due to inherent randomness in the input motion 
frequency content and soil properties, and that the 
uncertainties are due to both the inherent 
randomness and the modeling uncertainties, 
respectively. The final results of the seismic 
probabilistic risk assessment (SPRA) calculations 
for the investigated NPP are shown in Table 1. The 
results indicate that the two uncertainty sources, i.e. 
randomness and modeling, contribute almost 
equally to the total seismic response uncertainty. 
They are typical for NPPs founded on soil sites and 
consistent with the present state-of-the-engineering 
knowledge and practice. The paper focus is limited 
to SSI modeling uncertainties. 

One major aspect which is a significant barrier 
against SSI modeling accuracy is the limitation of 
currently available computational tools for 
performing efficiently rigorous nonlinear SSI 
analyses, including both wave propagation aspects 
and soil/structure nonlinear behavior aspects. Using 
the most currently applied computer programs such 
as SASSI, CLASSI, DRAIN, ADINA, ANSYS, 
ABAQUS, etc. there are strong limitations for 
rigorous nonlinear SSI analyses. The limitations are 
due to the computational effort, program capability 
and professional qualification and effort associated 
with the use of different computer programs. As a 
consequence of this situation, the SSI practical 
procedures include significant conservatism to 
cover the simplified assumptions made. On the 
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other side, simplified investigations may generate 
an uneconomical design due to higher stresses in 
structures. One may think more seriously to the 
potential savings coming fiom applying a more 
refined SSI analysis while designing or retrofitting a 
concrete highway bridge within the US. Any 
simplified conservative assumption on modeling of 
SSI effects, including structurallsoil nonlinear 
behavior and local wave propagationlscattering 
effects, may induce additional cost of millions of 
dollars. 

Other significant SSI aspects which need more 
attention and more adequate consideration in the 
future engineering practice are related to the 
evaluation of (i) torsional effects induced in 
structures with mass eccentricities and large size 
foundations due to motion incoherency, including 
wave passage effects, and structure-soil-structure 
interaction effects between neighboring structures, 
especially for massive, deeply embedded or buried 
structures. An important modeling SSI uncertainty 
is related to the computation of seismic pressures on 
embedded walls and deep foundations. Other aspect 
which in practice sometime is of a great interest is 
the local soil instability effects, especially 
liquefaction, on SSI response. To highlight the SSI 
aspects selected case study results are briefly 
discussed as shown Figures 3 through 10. 

Figure 3 shows the in-structure spectra 
computed in an axisyrnmetric model of a Reactor 
Building founded on a soft soil, i.e. shear wave 
velocity of 1000 fps, at the basemat at the edge due 
to torsional accelerations and at the top of internal 
structure due to horizontal translational 
accelerations. The motion incoherency was 
idealized using a Luco-Wong model (Luco and 
Wong, 1986) with a coherence parameter of 0.30, 
which corresponds to an upperbound of 
incoherency. For this value, the computed peak 
acceleration due to torsional motion is 30% of the 
peak acceleration due to horizontal translation. The 
SSI calculations were done with the ACS 
SASSIPC computer program (Ghiocel, 1997). This 
computer program is based on the original SASSI 
program, but has significant additional capabilities, 
including motion incoherency and multiple 
excitation options. Torsional motions induced by 
incoherency can have a severe effect on 

nonsyrnmetric structures with large mass 
eccentricities. 

Figure 4 shows the seismic pressure computed 
on the lateral wall of a typical, flexible buried waste 
storage tank (WST) filled with liquid, using a 
Beredugo-Novak lumped parameter SSI model 
(Miller and Costantino, 1994) and a SASSI model. 
The computed pressure distribution has different 
shapes for the two SSI models. Further, Figure 5 
shows the effect of SSI by comparing the seismic 
response of an isolated WST with that of two WST 
model. The two WST are identical and separated by 
a short horizontal distance, being coupled through 
the soil medium. The surface input excitation is the 
same for both comparative cases. The wave shadow 
effect (Xu et al., 1994) is visible in high frequency 
range. For the two WST coupled model there is a 
significant drop in the high frequency components 
fiom the bottom tank level to the surface due to the 
wave shadow effect. However for the bending 
moments in the tank shell the wave shadow effects 
appears to be less significant. 

Figures 6 through 8 illustrates the results 
computed for a Reactor Building (RB) on a pile 
foundation in a relatively soft and liquefiable sand 
deposit (Ghiocel et al, 1996). Figure 6 shows the 
SASSI model of the RE3 including the pile 
foundation. Figure 7 shows the fiee-field 
liquefaction analysis results computed using an 
effective-stress computer program, LASS 
(Ghabousi and Dikmen, 1977-1 984), and assuming 
the water table located just below ground surface. 
The liquefaction analyses indicated that there is a 
potential liquefiable sand layer between lm and 6m 
depths. SSI analysis was performed using the 
equivalent soil properties computed from the free- 
field analysis assuming that limited liquefaction 
takes place between lm and 6m depths. It was 
assumed that liquefaction starts at the beginning of 
the earthquake, and that it surrounds the pile 
foundation in all horizontal directions. The 
assumption is very drastic, so that the corresponding 
results represent an upper bound of the pile 
foundation response. As expected, the effect of 
liquefaction on pile forces was severe as illustrated 
in Figure 8. There is a major redistribution in the 
seismic forces and moments in the piles due to 



liquefaction, which shows a large increase in the 
upper part of the piles, underneath basemat, where 
liquefaction occurred. It should be noted that the 
variability in the pile axial forces is larger than in 
the pile bending moments. 

PROBABILISTIC PREDICTION MODELS 

Most of probabilistic seismic SSI analyses 
currently applied in practice, usually for critical 
facilities, use a lognormal format and base on 
simple technical guidelines such as those for the 
SPRA for NPP (Reed and Kennedy, 1994). These 
guidelines are a sort of modeling "recipes", in 
which the effects of different SSI uncertainties are 
generically quantified. The bad part of such a 
simple approach is that the probabilistic modeling 
may be crude and that the quantified uncertainty 
effects given in guidelines are based on limited 
research investigations and measurements; so that 
may not reflect the particularity of a SSI problem. 
Because of this, such types of modeling "recipes" 
may impact sometimes negatively on the quality of 
a SSI prediction, especially when the particularity 
of the problem is significant. It should be 
understood that such simplified probabilistic 
approaches with questionable modeling 
simplifications, which were considered as feasible 
and versatile for practitioner engineers of the '80s, 
when the computational resources were low and 
probabilistic modeling was in infancy, should be 
replaced in the next future. Desirably, a 
probabilistic SSI analysis has to accurately 
determine, by itself, the effects of different 
uncertainties for a specific SSI problem and not to 
assume them. Several criticisms of the actual state- 
of-engineering practice are discussed in this section. 
Before doing this, a brief review of the lognormal 
format is presented (Kennedy el., 1980). 

Lognormal Format 

Lognormal format has been used extensively in 
the past two decades for developing seismic 
structural fragilities for critical facilities including 
SSI effects. At this time the lognormal format is the 
most popular probabilistic format in engineering 
practice. One of the main reasons for using 

lognormal format for SPRA reviews is its 
mathematical simplicity for implementation. The 
lognormal distribution format is based on a 
mathematical expedience by combining subjective 
inputs with a multiplication scheme for fragility 
evaluation. 

Using the lognormal format approach (Kennedy 
et al., 1980), a structural fragility curve which is a 
function of hazard parameter, A, is defined in terms 
of the median capacity, A, times the product of two 
random factors, E and E , representing the inherent 
randomness about the median value and the 
uncertainty in the median value as follows: 

The two random factors are assumed to be 
lognormal random variables with median of unity 
and logarithmic standard deviation pR and Pu, 
respectively. If there is no modeling uncertainty 
(only randomness) failure of probability as a 
function of hazard parameter is computed using the 
standard normal cumulative function a(.) by 

If the modeling uncertainty is included then 

which computes the probability for which the 
failure probability p, exceeds p given hazard 
parameter value A (Kennedy et a1.,1980). Using the 
lognormal format, the probabilistic dynamic 
structural response for a hazard parameter reference 
level and probabilistic structural capacities are 
expressed as products of different factors (Kennedy 
et al., 1980, Reed and Kennedy, 1994). The basic 
two properties of lognormal model are (i) the 
median of a product of lognormal distributed 
random variables is equal to the product of the 
medians and (ii) the logarithmic standard deviation 
of a product is the square root of sum of squares of 
the individual logarithmic standard deviations. 



In the early '80s, it has been considered by 
engineering experts that the accuracy of the 
probabilistic distribution in the region of fragility 
curve tails is not essential for a SPRA. 
Unfortunately, this is true only if the major risk 
contributors correspond to hazard parameter values 
far away from probability distribution tails, 
especially from the lower tail (Kennedy et al., 
1980). More recently, comparative studies have 
indicated that the lognormal assumption for 
probability distribution applied in conjunction with 
multiplicative models for structural response and 
structural capacity may produce crude results for 
risk assessments (Hwang et al., 1987). In 
conjunction with the lognormal format, the use of a 
single reference level of the hazard parameter 
(assumed to be representative for the median 
structural capacity) for performing the SSI analysis, 
which has been applied in practice for expediency, 
may introduce significant inaccuracies. This is 
especially true when significant risk contributors 
come from random events defined by hazard 
parameters sensibly lower than reference level. A 
significant drawback of lognormal model is that the 
median capacity is insensitive to modeling 
uncertainty (Ellingwood, 1 994). 

One criticism of the lognormal format and its 
application based on the SPRA guidelines is related 
to probabilistic definition of seismic motion 
frequency content. As suggested by SPRA 
guidelines, the coefficient of variation of the 
spectral shape of a Uniform Hazard Spectrum 
(UHS) varies in the range of 0.25-0.30, which is 
typical for the Newmark-Hall spectrum type for the 
WUS, but less appropriate for the UHS type for the 
EUS. Figure 9 illustrate a typical UHS of a EUS 
NPP. It should be noted from this figure that the 
coefficient of variation of spectral shape varies in 
the range of 0.80-1.00, which is far larger than that 
recommended by the SPRA guidelines. 

Another criticism is related to typical 
applications of the lognormal format in conjunction 
with SPRA guidelines for computing in-structure 
response spectra using the so-called "median output 
to median input" rule. This rule largely expedites 
the probabilistic SSI analysis, but introduces a 
significant modeling uncertainty due to the highly 

nonlinear relationship between in-structure spectral 
peaks and the soil stiffness. This nonlinear 
relationship is shown in Figure 10. The use of a 
single deterministic SSI analysis for computing the 
median response for the reference level earthquake 
(other questionable concept for simplifying the 
probabilistic analysis) may introduce artificially 
high spectral peaks. 

The last criticism discussed herein is related to 
the computation of the structural capacity using the 
lognormal format and the SPRA guidelines when 
significant SSI effects are present. The use of 
inelastic energy absorption factors computed using 
the methods suggested in the SPRA guidelines is 
drastically unconservative. Those methods are 
calibrated for fixed-base structure without SSI 
effects. If the fixed-base inelastic factors are 
combined with SSI results the overall safety margin 
is incorrectly estimated, as the inelastic absorption 
and SSI effects are not independent and their 
combination must take into account their 
dependencies. Otherwise, a double-counted margin 
is introduced. This should be avoided when the 
Newmark modified spectra method or the spectral 
averaging method derived for fixed-base structures 
are combined with SSI effects. The changes in 
natural frequencies and structural damping due to 
structural nonlinear effects have considerably less 
impact on a structural system having a large 
effective damping (including SSI energy radiation 
phenomenon), than on a fixed-base structure with 
low damping which is very sensitive to changes in 
its frequency and damping. Kennedy et al., 1985, 
based on a limited number of cases, gives two 
different expressions for the median inelastic factor, 
F, : 

F, u J0.6(ps - I)+ 1 for fixed-base 

structures (4) 

Fpu ,/0.2(pS - 1) + 1 including SSI (valid 

for a stiff soil) (5) 

where p, is the story drift ductility factor. For 
example, for a story ductility factor p,=5.0 the 
inelastic absorbtion factor is 1.8 for fixed-base cases 
and only 1.3 for SSI cases. For a NPP structure 



founded on a softer soil the difference is obviously 
larger. Further research on this important aspect is 
needed. 

The above criticisms are only a few of the many 
possible criticisms and, probably not the severest 
ones against the current state-of-engineering 
practice for probabilistic SSI analysis, more specific 
for NPP practice. These methodological 
deficiencies can be improved if the lognormal 
format is applied in conjunction with extensive 
simulations using random sampling techniques. 
This implies significant higher costs of probabilistic 
SSI analysis due to larger computational and human 
effort. It also requires highly qualified engineers on 
both SSI modeling and probabilistic modeling. A 
cost-effective alternative is to use specialized 
computer programs with user friendly interface for 
performing probabilistic SSI. In this idea, a 
probabilistic approach is proposed in this section 
(Ghiocel and Ghanem, 1999). This approach was 
recently implemented and applied in conjunction 
with SASS1 models for SSI computations. 

The above discussions suggest the need of a 
case-by-case type of probabilistic SSI methodology 
and compuational tool, capable of including the 
particularity of a SSI problem. Specifically, SSI 
effects coming from deep embedment, structure- 
soil-structure interaction, motion incoherency for 
large size foundations, local soil instability should 
be more carefully considered in engineering 
practice. As shown in this paper each of these 
effects may significantly affect seismic SSI 
response. 

Proposed Approach 

The most extensive studies performed in the 
past on probabilistic (seismic) SSI, which were 
supported by Nuclear Regulatory Commission 
(NRC), are those performed by Lawrence 
Livermore National Laboratory (LLNL, Shieh et al., 
1985) and by Brookhaven National Laboratory 
(BNL, Pires et al., 1985). The LLNL study was 
based on a large number of case studies with the 
aim of identifying the most significant variables for 
seismic SSI effects and their influence on structural 
response variability. However, the LLNL study did 
not involve any probabilistic methodology. The 

BNL study focused on nuclear containment 
structures using linear random vibration theory to 
calculate limit state probabilities under random 
seismic loads. The BNL departed from the current 
format suggested by the SPRA guidelines for NPP 
(Reed and Kennedy, 1994). However, the BNL 
methodology is restricted to superficial rigid 
circular foundations on a visco-elastic half-space. 
For realistic situations including arbitrary shaped 
and/or flexible foundations, partially embedded or 
buried structures, oblique seismic waves, non- 
uniform soil layering the BNL methodology is not 
directly applicable. The proposed probabilistic 
approach rigorously addresses these aspects. 

A significant advantage of the proposed 
probabilistic approach is that the loads and system 
parameters can be more accurately described by 
random fields (time-space variability) rather than 
random variables (point variability) as assumed in 
the current SPRA reviews. Earthquake motion and 
soil properties are properly represented by random 
fields (Ghiocel, 1996, Ghiocel et. a1 1996). 

The key idea of the proposed approach is to 
provide a global complete description of the 
stochastic system response surface. The proposed 
approach has two implementation steps. The first 
step involves an expeditious condensation of the 
basic random processes via the KL expansion. The 
second step evaluates the coefficients of a stochastic 
orthogonal polynomial expansion of system 
response. After the coefficients of polynomial 
expansion are obtained, simulation of points on the 
system response surface can be obtained. Finally, 
probabilistic structural risks can be directly 
evaluated once the expansion of stochastic response 
surface is calculated. 

Using Karhunen-Loeve (KL) expansion (Loeve, 
1977, Ghanem and Spanos, 1991) a continuous 
random property field, p ( x , ) ,  is expanded 
according to equation 

where 0 denotes the random dimension, pi 

represents a certain scale of fluctuation of the field p 
while 5, represents its random magnitude and hence 



the random contribution of that particular scale to 
the overall property field. Both the property field 
and its various scales are global quantities and 
depend on the spatial position x, they can also be 
multi-variate quantities. In the case where the 
material property in question is a random variable, 
the above sum is reduced to a single term. 

The KL expansion of a stochastic process 
e(x,0), is based on the spectral expansion of its 
covariance function R,,(x, y) . Here, x and y are 
used to denote spatial coordinates, while the 
argument 0 indicates the random nature of the 
corresponding quantity. The covariance function 
being symmetrical and positive definite, by 
definition, has all its eigenfunctions mutually 
orthogonal, and they form a complete set spanning 
the function space to which e(x,9) belongs. It can 
be shown that if this deterministic set is used to 
represent the process e(x,9), then the random 
coefficients used in the expansion are also 
orthogonal. The expansion then takes the following 
form 

where E(x) denotes the mean of the stochastic 

process, and {<,(0)) form a set of orthogonal 
random variables. Furthermore, {+ , (x)) are the 
eigenfunctions and {A,) are the eigenvalues, of the 
covariance kernel, and can be evaluated as the 
solution to the following integral equation 

where A denotes the spatial domain over which the 
process e(x,0) is defined. The most important 
aspect of this spectral representation is that the 
spatial random fluctuations have been decomposed 
into a set of deterministic functions in the spatial 
variables multiplying random coefficients that are 
independent of these variables. The closer a process 
is to white noise, the more terms are required in its 
expansion, while at the other limit, a random 
variable can be represented by a single term. In 
physical systems, it can be expected that material 

properties vary smoothly at the scales of interest in 
most applications, and therefore only a few terms in 
the KL expansion can capture most of the 
uncertainty in the process. It should be noted that in 
comparison with other series representations, the 
KL expansion has the minimum number of terms, 
or in other words the minimum number of random 
variables for random field decomposition. 

For seismic SSI problems, of a particular 
interest are positive random fields, such as the 
amplitude of as a function of frequency or soil 
stiffness and hysteretic damping profiles as 
functions of depth, which are positive quantities. 
Thus, a new development consisting of a 
transformed space KL expansion was used for 
representing the positive non-normal random fields. 
The basis of this development is to find a mapping 
between the positive non-normal random field and 
an associated normal random field (Grigoriu, 1997). 
In particular, the treatment of lognormal processes 
is particularly expeditious given a number of 
analytic expressions that are available regarding it. 

For SSI response, the covariance function is not 
known apriori, and hence the KL expansion cannot 
be used to represent it. Since the SSI solution 
process is a function of the material properties and 
seismic input, the entries of the nodal response 
vector t can be formally expressed as a nonlinear 
functional of a set {<,(0))used to represent the 
material and seismic input stochasticity. It has been 
shown that this functional dependence can be 
expanded in terms of polynomials in gaussian 
random variables, referred to as Homogeneous (or 
Polynomial) Chaoses (Cameron, 1 947). 

The expansion of SSI response takes on the 
following form (Ghanem and Spanos, 1991): 

m 

u(x,t,@) = ao(x,t)ro + C a,, (x,t)T, (Si, (0)) 
i l = l  

In this equation, the symbol 
r, (< ,, , . . . , < ) denotes the Homogeneous (or 

Polynomial) Chaos (Kallianpur, 1980, Wiener, 
1938) of order n in the variables (6,) ,..., <,, ) . 



Introducing a one-to-one mapping to a set with 
ordered indices denoted by {ty (8)) and truncating 
the Homogeneous (or Polynomial) Chaos expansion 

after the P' term, equation 10 can be rewritten as 

These polynomials are orthogonal in the sense 
that their inner product < ty jty > , which is 

defined as the statistical average of their product, is 
equal to zero for j # k . A complete probabilistic 
characterization of the solution process U(X, t,8) is 
obtained once the deterministic coefficients 
uj (x, t) have been calculated. A given truncated 

series can be refined along the random dimension 
either by adding more random variables to the set 
(5,) or by increasing the maximum order of 
polynomials included in the Homogeneous (or 
Polynomial) Chaos expansion. The first refinement 
takes into account higher frequency random 
fluctuations of the underlying stochastic process, 
while the second refinement captures strong non- 
linear dependence of the solution process on this 
underlying process (Ghanem and Spanos, 199 1). 

Using the orthogonality property of 
polynomials, the coefficients of the Homogeneous 
Chaos of the solution process can be computed by 

uk = < wku > for k = I ,  ... K 
<w: > 

One of the key factors for obtaining an efficient 
numerical implementation of the stochastic 
approach based on Homogeneous Chaos expansion 
is related to the computation of the inner products or 
averages < y , u  > in equation 1 1. This can be 
rewritten in an explicit integral form 

Polynomial Chaoses are orthogonal with respect 
to the Gaussian probability measure, which makes 
them identical with the corresponding 

multidimensional Hermite polynomials (Grad, 
1949). From the above equation it is obvious that 
the integration domains spans a large 
multidimensional space, the dimensionality being 
given by the number of elementary standard normal 
random variables defining the set {ti). The 
multidimensional integral given in equation (1 1) 
can be computed using various integration 
procedures including Gauss-Hermite quadrature or 
efficient simulation techniques. For actual 
integration an innovative stratified sampling 
technique was employed. An alternate approach 
using advanced stochastic finite element concepts is 
described elsewhere (Ghiocel and Ghanem, 1999). 

For getting a faster convergence in the case of 
non-normal processes, a transformed space 
representation of non-normal processes was used. 
Therefore, a logarithmic transformation was applied 
at the level of the extreme responses before 
expanding it in a Homogeneous Chaos. Then the 
expansion was performed in a transformed space for 
which the corresponding process is closer to a 
normal process. Finally, the non-normal process 
was determined using an inverse transformation, 
specifically an exponential transformation. This 
transformation is expressed mathematically by 

This significantly has speeded up the 
convergence and has improved the accuracy of the 
computed series expansions for extreme-value 
responses. 

Earthquake Motion Description 

Earthquake ground acceleration was represented 
by a segment of a (non)stationary random process 
(nonstationarity was introduced by using a 
deterministic intensity shape function) with zero 
mean, known frequency content and spatial 
correlation structure. This stochastic representation 
is conditional to the given zero-period peak ground 
acceleration (ZPGA) level. For evaluation of the 
overall seismic structural risk all the ZPGA levels, 
i.e. the seismic hazard curve at the site, should be 



considered. For each ZPGA level, the frequency 
content of earthquake motion is described locally, in 
a point at ground surface, by either a acceleration 
probabilistic response or a power spectral density 
function. The three earthquake motion components 
were assumed to be statistically independent. The 
spatial correlation structure of ground motion field, 
which is a function of frequency, was defined by a 
coherency spectrum matrix. 

Local (Point) Description: Typically in 
engineering practice probabilistic site-specific 
ground response spectra were defined for hazardous 
facilities (LLNL, 1993, EPRI, 1991). The 
probabilistic ground spectra are usually described 
by three digitized spectral response curves 
computed for 15%, 50% and 85% non-exceedance 
probability assuming a lognormal distribution of 
amplitudes. Herein, the probabilistic ground 
spectrum was assumed as an one-dimensional 
lognormal random field in frequency domain with 
certain bandwidth characteristics given by the soil 
deposit behavior as a second-order linear filter for 
incoming seismic waves. The spectral amplitude 
field was modeled by a lognormal random field 
using a transformed IU expansion. As an alternate 
of local description of earthquake ground motion, 
the power spectral density may be input instead of a 
probabilistic spectra. Four analytical expressions 
were considered for the power spectral density 
(Pires et al., 1985): 

(i) Kanai-Tajimi spectrum (spectral shape similar 
to the acceleration transfer function of single 
degree of freedom subjected to a base 
excitation) 

(ii) Ruiz-Penzien spectrum 

(iii) Ruiz-Penzien spectrum multiplied by a low- 
pass first-order filter and 

(iv) Brookhaven National Lab (BNL) spectrum 

where wf ,a and <, ,tp are the frequency and 

bandwidth of the filters. 
These analytical forms are widely accepted by 

the earthquake engineering community, being the 
most popular ones. The Kanai-Tajimi spectrum, (i), 
was the first of the above expression to be proposed. 
The Ruiz-Penzien spectrum, (ii), was intended to 
adjust the low frequency content of Kanai-Tajimi 
spectrum at frequency equal to zero. The improved 
Ruiz-Penzien spectrum, (iii), reduces the high 
frequency content of the Kanai-Tajimi spectrum. 
The BNL spectrum, (iv), has a lower high frequency 
content than the Kanai-Tajimi spectrum removes 
the singularity of the displacement spectral power 
density at zero frequency (Pires et al., 1985). 

Spatial Variation (Incoherency): For an 
incoherent wave field the unlagged coherence for 
two point motions i and k can be defined as 
(Abrahamson et al, 1990): 

Coh,,,, (o) = CohiTk (o) A(i o ,  Xi - X, ) 

exP [io(Xi - X,) 1 v,,-, I (1 8) 

where A(i o ,  Xi - X, ) is a decaying function of 
frequency starting from unit value which gives the 
relative power of the wave field described by a 
plane wave at all frequencies. The term 
exp[io(Xi - X, ) / V,-, ] in equation 23 represents 
in the frequency domain the phase angle between 
the two point motions due to the wave passage 
effect. Parameter V,-, is the apparent seismic 
wave velocity defined by the distance between the 



two points, absolute of Xi - X, . If the wave field is 
perfectly described by a single plane wave, the 
function A(i a ,  Xi - X, ) is equal to unity. 

For two one-dimensional random time series 
representing an unidirectional seismic motion 
components in two arbitrary points of the soil 
deposit, j and k, the (narrow band) coherence is 
defined by a complex function of frequency 

Coh ,,, (a) = 
j,k (w) 

Ls , ,  ( ~ ) ' k , k  (a]'12 

where S , , ( a )  is the cross-spectral density 

function for two points j and k, and S j,j ( a )  is the 

auto-spectral density for point j (similar for point 
k). The coherence describes the similarity of the two 
point motions. Generally, in engineering 
applications, the so-called "lagged" coherency 
spectrum or "lagged " coherence are used 
(Abrahamson et al., 1990). The lagged coherency 
includes only the amplitude randomness and 
removes the wave-passage randomness. From 
physical point of view, the lagged coherence 
represents the fraction of the total power of seismic 
motion which can be idealized by a single 
deterministic plane wave motion called the coherent 
motion. Usually in the current earthquake 
engineering language, the lagged coherence is 
called simply coherence. More generally than the 
"lagged" coherence, the "unlagged" coherence 
includes the wave-passage random effects. 

Based on the experimental evidence of different 
records of past earthquakes, the following analytical 
forms for the coherence function were considered: 

(i) Luco-Wong model (Luco and Wong, 1986), 
defined by 

in which y is the coherence parameter and v, is the 
shear wave velocity in the soil. The above analytical 
expression compared with others given in the 

technical literature based on experiment fitting 
(Hoshiya and Ishii, 1983, Harichandran and 
Vanmarcke, 1986, etc.) has the advantage of a 
theoretical support based on the analytical 
formulation of shear wave propagation in random 
media (Uscinski, 1977). Luco and Wong, 1986, 
suggested that the coherence parameter has generic 
values in the range of 0.10 to 0.30. 

(ii) Abrahamson model (Abrahamson, 199 1, 1993), 
defined by 

C O ~ , , ~  (o )  = coh(lx,- Xk[ ,o)  = 

Tanh((a1 + a 2  Ixi- xkl)[exp[- (21) 

where a l ,  a2, bl, b2 and c are model parameters. 
These parameters can be introduced by the user, 
otherwise by default the values (Abrahamson, 1990) 
are used, i.e. a1=2.55, a2=-0.012, bl=0.115, 
b2=0.00084, ~ 0 . 8 7 8  and k=0.35. These parameters 
may be defined as random variables. 

Assuming that the seismic wave field can be 
modeled by a plane wave, an element of the cross- 
spectral density matrix of multidimensional motion 
random field can be derived analytically 

for each pair i,k of point motions. 
To implement the random field model of 

incoherent soil motion, the coherence matrix is 
decomposed via KL expansion. The motion 
incoherency effects are are larger for higher 
frequency components than for lower frequency 
components. Usually, the effect of incoherency is to 
reduce translational motion and rocking motion and 
increase torsional motion. 

Soil Property Description 

Soil properties were assumed to be 
homogeneous in a horizontal plane and therefore 
they were idealized as one-dimensional random 
fields, i.e. random varying profiles with depth. 



Specifically, the randomness in soil dynamic 
properties was considered by variabilities in shear 
modulus, hysteretic damping and Poisson ratio. 
First, the soil deposit was discretized in a geometric 
layering with varying properties. Soil shear 
modulus at low strains, G,, , was idealized as an 
one-dimensional lognormal random field in the 
vertical direction having a non-stationary mean and 
an assumed correlation length for same material 
type. This idealization is considered to be 
significantly more realistic and less conservative 
than the assumption of perfect correlation currently 
applied for parametric deterministic SSI studies. For 
soil layering including different materials, a set of 
multiple random fields may be considered. The 
shape (nondimensional variation) of the shear 
modulus - shear strain curve, G(y) 1 Gma - y was 
modeled by a random field along the shear strain 
axis with a non-stationary mean. The mean curve 
was assumed to have an arbitrary shape which is 
either introduced by the user or by default stored in 
the program database. The same modeling 
assumption used for the shear modulus curve was 
considered for the hysteretic damping - shear strain 
curve, D(y) - 

For implementation, the soil property fields 
were decomposed via KL expansion. The statistics 
of the soil property field models, including 
correlation length parameters, were derived by 
calibrating the mathematical models with 
experimental data available. 

Structural Properties 

Structure damping and stiffness parameters were 
assumed to be random variables. This assumption is 
based on the fact that the random variation of these 
parameters within the superstructure are 
appropriately a set of independent random variables, 
than by a continuous random field with a well- 
established correlation structure expandable in a KL 
series. 

Example Application 

The proposed approach was applied to a typical 
Reactor Building (RB) subjected to earthquake 
motion. The probabilistic SSI response was 

compared with a deterministic SSI response 
computed using the current practice for NPP. The 
finite element model used for seismic soil-structure 
interaction analysis is shown in Figure 11 (Lysmer 
et al., 1988). This SSI computational model 
represents a typical SASSI model for seismic design 
basis calculations of a reactor building. The 
superstructure is modeled by beam elements and the 
basemat is modeled by solid elements. Rigid links 
are introduced to transmit the rocking motion from 
the superstructure stick to the basemat. The ACS 
SASSI computer program (Ghiocel, 1997) was used 
for both the free-field analysis and the SSI analysis, 
performed either probabilistically or 
deterministically. 

Deterministic analysis was done for a seismic 
input defined by the design ground spectrum 
associated to a 84% probability of nonexceedance. 
A spectrum compatible accelerogram was generated 
for SSI analyses. As shown in Figure 12 the 
computed response spectra of the generated 
accelerogram slightly envelopes the given design 
spectrum. Soil properties were be the best-estimate 
values (median). In accordance to the current 
seismic design requirements, two additional 
extreme bounds, 0.50 times best-estimate and 2.00 
times best-estimate values were considered. The 
final results of the deterministic analysis are 
obtained by enveloping the results for the three soil- 
structure interaction analysis for the three set of 
values of soil parameters. 

For probabilistic analysis, the earthquake input 
was defined by a probabilistic response ground 
spectrum as shown in Figure 13. The four spectral 
curves corresponds to mean, median and 16% and 
85% nonexceedance probability estimates. The 
probability distribution was assumed to be 
lognormal. The lognormal spectral amplitude field 
was represented using a transformed KL expansion. 
The correlation length along frequency axis was 
selected depending on the desired bandwidth of 
simulated spectra (function of damping). The 
number of frequency steps to describe the spectral 
shape was 100. The smaller the correlation length 
is, the narrower the spectral peaks are. Figure 14 
illustrates the ensemble statistics (for 
nonexceedance probabilities of 15%, 50%, 85% and 
mean) of the probabilistic model of ground response 



spectrum for a set of 100 realizations. Few 
simulated realizations are shown in Figure 15.For 
probabilistic soil-structure interaction analysis the 
effect of motion incoherency was considered using 
a Luco-Wong model with a y parameter of 0.20. 
The resulted spatial variation of motion amplitude 
for different frequencies is plotted in Figure 16. 

Soil properties were defined assuming that the 
low strain soil shear modulus and hysteretic 
damping profiles (variation with depth) are 
lognormal random fields. Figure 17 shows the 
probabilistic shear modulus profile (statistically 
estimated profiles are included). Plotted curves 
correspond to mean, median and 16% and 84% 
nonexceedance probability. A transformed space 
KL expansion was used to represent these 
lognormal positive fields. The variation of 
nondimensional shear modulus and hysteretic 
damping versus shear strain were modeled as 
normal random fields decomposable directly in 
original space in KL expansion. Simulated 
variations are shown in Figure 19. 

Structural properties are described using random 
variables. Specifically, the Young elastic modulus 
and the material damping ratio were assumed to be 
normal random variables with a coefficient of 
variation of 0.25. The means were assumed to be 
0.80 of the linear elastic modulus and 8%, 
respectively. 

A comparison of probabilistic response 
computed using the proposed approach (using 100 
solutions) and a Monte Carlo simulation (using 500 
solutions) is shown in Figure 20. 

Figure 21 shows the coefficients of the 
transformed Homogeneous Chaos expansion using 
72 basic random variables. Between 1 and 72 are 
the coefficients of the first-order polynomials, and 
between 73 and 144 are the coefficients of the 
second-order polynomials (without coupling). It is 
to be noted that only less than half of the number of 
basic random variables have significant 
contributions. Larger contributions come from 
linear terms than from nonlinear terms. However, it 
is very difficult for the complex soil-structure 
problem to preliminary establish with are the most 
significant variables. There is a need to get more 
insights on this aspect in the future. 

Figure 22 shows a comparison between 
deterministic and probabilistic analysis results, both 
in terms of in-structure response spectra. 
Deterministic estimates corresponds to very low 
nonexceedance probability levels. Having in mind 
the additional conservatism introduced in the 
overall seismic evaluation by the seismic hazard 
definition and the evaluation of structural elements 
or equipment capacities, it appears that the current 
deterministic SSI analysis procedure is overly 
conservative. 

CONCLUDING REMARKS 

The paper addresses the effects of SSI modeling 
uncertainty on seismic response, discusses 
shortcomings of current state-of-engineering 
practice on probabilistic SSI for hazardous facilities, 
and proposes a new accurate procedure for 
performing probabilistic SSI analysis. SSI modeling 
uncertainty effects are illustrated using the results 
from different case studies. The proposed procedure 
represents a significant advancement for performing 
probabilistic seismic SSI analyses of hazardous 
facilities. 

The proposed approach based on a stochastic 
series representation of SSI response offers 
accuracy, efficiency and significant modeling 
advantages in comparison with the currently SPRA 
approaches. The proposed approach addresses 
efficiently large number of variables problems such 
as dynamic SSI problems and handles random field 
models, useful for idealization of dynamic loading 
and system parameters. In addition, the proposed 
approach is capable of handling large variability and 
highly nonlinear problems. 
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