Probabilistic Seismic SSI Analysis Sensitivity Studies for Base-Isolated Nuclear Structures Subjected to Coherent and Incoherent Motions

Ghiocel Predictive Technologies Inc.

Dr. Dan M. Ghiocel

Member of ASCE 4 & 43 Standards

Email: <u>dan.ghiocel@ghiocel-tech.com</u> Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com

SMiRT25 Conference, Division III Charlotte, NC, USA

August 4-9, 2019

2019 Copyright of Ghiocel Predictive Technologies, Inc.

Purpose of Presentation:

To investigate the effects of base isolation on seismic SSI response of a typical NI complex under coherent and incoherent motions using probabilistic and deterministic SSI analyses and different base-isolation systems, LRBs and HVDs.

The probabilistic and deterministic SSI analyses follow the recommendations of the ASCE 4-16 standard.

Sensitivity Studies

The presentation illustrate key results of a series of sensitivity studies, in two project phases, in 2015 (LRBs) and in 2019 (HVDs) to investigate

- 1) the effects of the base-isolation against no base-isolation for rock sites and soil sites,
- 2) the effects of motion incoherency on SSI responses
- 3) the use of probabilistic SSI vs. deterministic SSI analysis
- 4) the effects of using the 3D HVD base-isolators against the 2D LRB base-isolators.

1. Effects of Seismic Base-Isolation on ISRS for Soil and Rock Sites and Coherent Motion

Soil Layering:

SOIL: Uniform with Vs = 1000 fps ROCK: Uniform with Vs = 6000 fps Seismic Input: RG1.60 Input with 0.30g

Used ACS SASSI software with Option NON (nonlinear springs via iterative EQL SSI analysis)⁴

2019 Copyright of Ghiocel Predictive Technologies, Inc.

Modelling of the Hysteretic LRB Isolators

An efficient seismic SSI analysis was based on computing iteratively the SSI response for the equivalent-linearized system in complex frequency, coupled with an evaluation the local nonlinear spring behaviour in time domain for the simultaneous X, Y and Z inputs based on which the equivalent-linear spring is determined.

General Hysteretic Model for LRB Isolators

6

ISRS for NI Complex With and Without Isolators

ISRS for NI Complex With and Without Isolators

Top Basemat ISRS With and Without Isolators

High-Elevation Horizontal ISRS With Isolators for Rock and Soil Sites

2. Effects of Motion Incoherency on ISRS

Incoherent Seismic Input:

- For the comparative coherent vs. incoherent deterministic SSI analysis study, a uniform soil deposit with a Vs of 2,000 fps was considered.

- The incoherent motion was defined based on the Abrahamson coherence function for soil sites (Abrahamson, 2007).
- Additionally, an apparent traveling wave velocity of 6,000 fps was included to simulate the wave passage effects in the X-longitudinal direction.
- For the incoherent SSI analysis, the rigorous stochastic simulation approach (with no phase adjustment) based on a clean Monte Carlo wavefield simulations was used.
- Several incoherent seismic wavefields were simulated. 2019 Copyright of Ghiocel Predictive Technologies, Inc.

Coherent and Incoherent SSI Responses

Coherent Accelerations

Rot: X = 90.000000 Y = -0.500000 Z = 0.000000 coherent Rot: X = 90.500000 Y = -0.500000 Z = 0.000000 Incoherent 2 Zoom: 0.854998 Pan: X = -28.000000 Y = 177.000000 Zoom: 0.854999 Pen: X = 17.000000 Y = 184.000000 Screen Size: X = 874 Y = 630 Screen Size: X = 874 Y = 630 Frame: 459 Frame: 460 Rot: X = 105.500000 Y = -2.500000 Z = 10.000000 Incoherent 2 Rot: X = 105.000C00 Y = -3.000000 Z = 10.000000 coherent Zoom: 0.801000 Pan: X = 17.000000 Y = 184.000000 Zoom: 0.801999 Pan: X = -3.000000 Y = 176.000000 Screen Size: X = 874 Y = 630

Frame: 459

Screen Size: X = 874 Y = 630 Frame: 459

Incoherent Accelerations

2019 Copyright of Ghiocel Predictive Technologies, Inc.

Horizontal and Vertical ISRS at Top of IS

Horizontal

Vertical

Effect of Motion Incoherency on Relative Displacements at NI Complex Critical Locations

Reference Location is Top Slab Center

3. Probabilistic vs. Deterministic SSI Responses

Soil Material Curves

Deterministic Soil Profiles

Surface GRS

Probabilistic-Deterministic ISRS for NI Complex

Probabilistic-Deterministic ISRS for NI Complex

Some Remarks from 2015 Studies:

- Probabilistic SSI analysis results are significantly larger than Deterministic SSI analysis results for coherent inputs.
- Probabilistic SSI analysis produces significantly larger ISRS amplifications for higher frequency modes.
- Motion incoherency increases significantly the relative displacements within the NI complex
- LRB isolator axial forces are largely increased due to motion incoherency (not shown)

4. Frequency-Dependent 3D HVD isolators

3D HVD is a new ACS SASSI element 2019 Copyright of Ghiocel Predictive Technologies, Inc.

2019 Copyright of Ghiocel Predictive Technologies, Inc.

Comparative Coherent vs. Incoherent ISRS for No Isolators vs. HVD and LRB Isolators

Top Base Center

Comparative Coherent vs. Incoherent ISRS for No Isolators vs. HVD and LRB Isolators

Top of IS near Center

Comparative Coherent vs. Incoherent ISRS for No Isolators vs. HVD and LRB Isolators

Top of IS near Edge

Comparative Coherent ISRS for Different Number of Units for HVD 1 and HVD 2 vs. LRB Isolators

Top Base Center

Predictive Technologies, Inc.

26

Comparative Coherent Relative Displacements wrt to Top Base Center

High Elevation Location

Predictive Technologies Inc.

CONCLUDING REMARKS

The main conclusions are:

- i) the RB complex base-isolation is highly effective for both the rock and soil sites,
- ii) the motion incoherency largely amplifies the horizontal ISRS and relative displacements within NI complex,
- iii) the 3D HVD isolators are more effective than the 2D LRB isolators, especially for the vertical motions.