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ABSTRACT  

 
An accurate representation of sloshing waves under an arbitrary seismic excitation of partially filled large 

size tanks/pools is crucial for the study of hydrodynamic load on the structural elements. The investigated 

fluid motion exhibits strong nonlinearity, sensitive to the fluid-structure hydro dynamic interaction. In this 

paper the finite element modelling of sloshing waves is carried out based on the fully non-linear wave 

potential theory. The validity of the approach is verified against published linear and non-linear analytical 

and numerical solutions as well as experimental measurements. The effect of the vertical baffles oriented 

in a longitudinal and transverse directions is analysed. The impact of bafflers elasticity is strictly local, 

affecting primarily the force exerted across the surface of the baffle. It was found that the baffle resilience 

found in FSI modeling is higher in comparison with a rigid baffle. When the excitation frequency is close 

to the natural frequency of the tank, the dynamics of the fluid becomes violent due to resonance leading to 

higher amplitudes of the surface waves and hydrodynamic force acting on the baffle. To reduce the sloshing 

wave effect in tanks, the baffle is widely used as a passive control, which is to dissipate the energy of the 

sloshing motion by segmenting the flow field of the tank into a number of sub-flow fields. The fluid 

hydrodynamic element is currently in the final QA verification and validation tests for implementation in 

the specialized ACS SASSI software for performing accurate fluid-soil-structure interaction (FSSI) analysis 

for nuclear structures including large tanks/pools.  

 

MATHEMATICAL FORMULATION  

 

Governing Equations and Boundary Conditions 

The 3D unsteady hydro elastic problem considered is based on the assumption of the incompressible 

irrotational fluid and inviscid flow. These assumptions successfully describe the water behavior under 

nonlinear surface waves, as proved in multiple publications, e.g.  (Dommermuth et al. 1988, Gagarina et 

al. 2014). Applying the definition of a velocity potential, 𝒖 = 𝛁𝜑, requirements for mass and momentum 

conservation can be expressed as follows: 

 
𝜑𝑥𝑥 +  𝜑𝑥𝑥 + 𝜑𝑥𝑥 = 0,         in Ω (1) 

  

𝜑𝑡 +
1

2
(𝜑𝑥

2 +  𝜑𝑦
2 + 𝜑𝑧

2) + 𝑔𝑧 +
𝑝

𝜌
= 0,    in Ω (2) 

 
where 𝒖 is the vector velocity field, Ω denotes the 3D physical domain, 𝜌 - water density, p – is the fluid 

pressure, 𝜑 – velocity potential, g – gravitational constant, x, y, z – Cartesian coordinates, t – time. Low 

indices indicate partial derivatives by the relating coordinate.  

 

On the side walls and the bottom (assuming walls are rigid) the potential satisfies kinematic 

compatibility conditions 
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𝜑𝑛 =  𝑼 ∙ 𝒏 (3) 

 

where 𝑼 – is the velocity of the wall, and n is the outward normal to the wall. On the free surface, S, 𝑧 =
𝜂(𝑥, 𝑦, 𝑡) the dynamic and kinematic conditions in a space fixed system can be written as: 

 

𝜑𝑡 +
1

2
(𝜑𝑥

2 +  𝜑𝑦
2) + 𝑔𝜂 −

1

2
(𝜑𝑧

2)|𝑆(1 + 𝜂𝑥
2 + 𝜂𝑦

2) = 0,         at S(t):  𝑧 = 𝜂(𝑥, 𝑦, 𝑡) (4) 

  

𝜂𝑡 + 𝜑𝑥𝜂𝑥 + 𝜑𝑦𝜂𝑦 − (𝜑𝑧)|𝑆(1 + 𝜂𝑥
2 + 𝜂𝑦

2) = 0          at S(t):  𝑧 = 𝜂(𝑥, 𝑦, 𝑡) (5) 

 

Finite Element Discretization 

Consider a structured mesh, where i, j, k are the integer coordinates of nodes, vector coordinate                       

x = ( x, y, z), and two multi indices: I = (i , j , k), J=(I, j). The nodal discrete potential values 𝜑𝐼 = 𝜑𝑖𝑗𝑘 

are time dependent, 𝜑𝐼 = 𝜑𝐼(𝑡). For simplicity, we use 3D quadrilateral elements with the standard three-

dimensional piecewise linear continuous basis functions in space for the “interior” potential φ(x). The six 

simplest local basis functions in a cubic element are 𝑁𝐼(𝜉1, 𝜉2, 𝜉3) = 1 ± 𝜉1 ± 𝜉2 ± 𝜉3), |𝜉𝑖| ≤ 1, defined 

by 6 local node values. On a free surface the truncated shape functions are used, 𝑁0𝐽(𝜉1, 𝜉2) = 1 ± 𝜉1 ±

𝜉2. Physical coordinates and local reference coordinates are related by a mapping with the same standard 

shape basis functions. The FE interpolations 𝜑ℎ  and  𝜂ℎ  are presented accordingly (The rule of 

summation is used that implies summation over the product of terms with repeated index) 

 

𝜑 ≈ 𝜑ℎ =  𝜑𝐼(𝑡)𝑁𝐼(𝜉1, 𝜉2, 𝜉3) 

 
 𝜂 ≈ 𝜂ℎ  =  𝜂𝐽(𝑡)𝑁0𝐽(𝜉1, 𝜉2) 

 

(6) 

 

(7) 

The FE Galerkin procedure, applied to the equations (1-6) yields the following system of 

ordinary differential equations.  

 

𝐺𝐼𝐼′𝜑𝐼′(𝑡) + 𝑅𝑀𝛿𝐼𝑀 = 0 

 

𝑀𝐽𝐾
𝑑𝜑𝐽

𝑑𝑡
+

1

2
(𝐴𝐽𝐽′𝐾 − 𝐵𝐽𝐽′𝐾)𝜑𝐽𝜑𝐽′ + g𝑀𝐽𝐾𝜂𝐽 = 0 

 

𝑀𝐽𝐾

𝑑𝜂𝐽 

𝑑𝑡
+ 𝐴𝐽𝐽′𝐾𝜂𝐽 𝜑𝐽′ − 𝐷𝐽𝐾𝜑𝐽 = 0 

 

(8) 

 

 

(9) 

 

 

(10) 

with the following matrix coefficients and vectors defined as 

 

𝐺𝐼𝐼′ = ∫ (𝛁
Ωℎ

𝑁𝐼 ∙ 𝛁𝑁𝐼′)𝑑Ω ;                         𝑅𝑀 = ∫ (
Ωℎ

𝑼 ∙ 𝒏)𝑁𝑀𝑑Ω ; 
 
(11) 

  

𝑀𝐽𝐾 = ∫ (
Ωℎ

𝑁0𝐽 ∙ 𝑁0𝐾)𝑑Ω ;                          𝐴𝐽𝐽′𝐾 = ∫ (
Ωℎ

𝛁𝑁0𝐽 ∙ 𝛁𝑁0𝐽′)𝑁0𝐾𝑑Ω (12) 

  

𝐷𝐽𝐾 = ∫
𝜕𝑁𝐽

𝜕𝑧Ωℎ

𝑁0𝐾𝑑Ω ;                                   𝐵𝐽𝐽′𝐾 = ∫ (
𝜕𝑁𝐽

𝜕𝑧
∙

𝜕𝑁𝐽′

𝜕𝑧
)

Ωℎ

𝑁0𝐾𝑑Ω 
(13) 
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where Ωℎ indicate computational domain, multi-index M is used for the nodes located on walls.  

Equations (8)-(10) create a compact numerical stencil using minimum points for discretization. 

Numerical approximation is of the 2nd order accuracy in space, and the 4th order accuracy in time. The 

Gauss-Seidel method was used to solve the combined system of linear equations (8) and the nonlinear ones 

(9), (10). The 2D discrete FE model similar to (8) – (13) was presented in Gagarina et al. 2014. 

 

Semi analytical approach for the implementation of elastic boundaries 

 

Fluid flow interacting with resilient structures induces forces, which modifies in return the fluid domain, 

i.e. velocities and the pressure fields at the fluid-structure interface. To solve an FSI problem, two different 

approaches can be used. The first one is the strong coupling approach, where a single solver is in charge of 

the resolution of the complete system of equations, (Liberson et al. 2017). The second one is the weak 

coupling, (Felippa et al. 2001), where two solvers deal respectively with the fluid and the structure 

equations, and exchange information at the interfaces to ensure continuity of the variables. 

  

The elastic baffle is regarded as the thin plate vibrating according to the Kirchhoff - Love two - 

dimensional model 

 
𝜌

𝑤
𝑊

𝑡𝑡
+ 𝐷∆∆𝑊 = 𝑝̂ 

 

(14) 

where W – wall normal deflection, 𝜌𝑤  - baffle’s mass per unit area, 𝐷 =
𝐸ℎ3

12(1−𝜇2)
  - flexural plate 

stiffness, E – elastic modulus, h – plate thickness,  𝜇 - Poisson coefficient, ∆ - 2D Laplace operator, 𝑝̂-

net pressure, which is essentially the difference between pressures applied to the front and back surfaces. 

The specified boundary conditions relate to the clamped plate: zero deflection and zero slope with respect 

to the vertical direction at the root section of the baffles, while other boundary edges are free from transverse 

shear forces and bending moments. Initial conditions are zero, 𝑊|𝑡=0 = 𝑊𝑡|𝑡=0 = 0   

 

Introducing the complete set of eigenfunctions, 𝑊𝑘(𝑦, 𝑧),   ∆∆𝑊𝑘=𝜆𝑘
4 𝑊, (𝑘 = 1,2, … ), we can 

expand normal deflection as  

  

𝑊(𝑡, 𝑦, 𝑧) = ∑ 𝑇𝑘(𝑡)𝑊𝑘(𝑦, 𝑧)

𝑘

 
(15) 

 
Since the set of eigenfunctions is orthogonal and normalized, we can determine equations for 

𝑇𝑘(𝑡)by plugging (15) into equation (14) following by formation of the inner product with each of the 

elements of the set 𝑊𝑘. The described procedure yields the set of isolated ordinary differential equation 

 

𝑇𝑘,𝑡𝑡 + 𝜔𝑘
2𝑇𝑘 =

1

𝜌𝑤
∫ 𝑝̂(𝜉, 𝑦, 𝑧)

Ω𝐵
𝑊𝑘(𝑦, 𝑧)𝑑𝑦𝑑𝑧,              𝜔𝑘 = 𝜆𝑘

2
√

𝐷

𝜌𝑤
 

 

(16) 

 
Solution of (16) can be introduced in the closed form 

 

𝑇𝑘(𝑡) = 𝑇𝑘0 cos(𝜔𝑘𝑡) +
1

𝜔𝑘
𝑇𝑘𝑡,0 sin(𝜔𝑘𝑡)

+
1

𝜌
𝑤

𝜔𝑘
∫ ∫ 𝑝̂(𝜉, 𝑦, 𝑧)

Ω𝐵

𝑊𝑘(𝑦, 𝑧) sin(𝜔𝑘(𝑡 − 𝜉)) 𝑑𝑦𝑑𝑧𝑑𝜉

𝑡

0

 

 
(17) 
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where 𝑇𝑘0, 𝑇𝑘𝑡,0 are initial conditions for the 𝑇𝑘(𝑡) and its derivative 

To specify kinematic compatibility of the flow encountering an elastic wall we need to differentiate (17) 

with the following use of equation (15). Setting to zero initial conditions velocity of the vibrating plate can 

be presented as the following: 

𝑊𝑡(𝑡, 𝑦, 𝑧) = ∑ 𝑊𝑘(𝑦, 𝑧)
𝑘

1

𝜌
𝑤

∫ ∫ 𝑝̂(𝜉, 𝑦, 𝑧)

Ω𝐵

𝑊𝑘(𝑦, 𝑧) cos(𝜔𝑘(𝑡 − 𝜉)) 𝑑𝑦𝑑𝑧

𝑡

0

𝑑𝜉 

(18) 

 

Finally, the generalization of a kinematic condition (3) in case of elastic walls interacting with fluid, reads  

 
𝜕𝐹

𝜕𝑛
= (𝑼 ∙ 𝒏) + 𝑊𝑡 

(19) 

 

It should be noted that the net pressure acting upon the plate located in a flow field cannot be 

predicted within Eulerian flow model. According to the D’Alembert’s paradox drag force within inviscid 

flow model is equal to zero, which addresses the related issue to the Navie-Stokes model capable to predict 

flow separation along with the Karman vortexes street. To circumvent the problem, we are using an 

engineering approach predicting drag pressure for the flat plate normal to the flow (Pritchard, Mitchel 2016) 

based on empirical drag coefficient as a function of Reynolds number, 𝑝̂ = 𝐶𝐷𝜌𝑈𝑟𝑒𝑙
2 /2 , where drag 

coefficient 𝐶𝐷  is independent of Reynolds number for Re>1000, 𝐶𝐷 = 2.05 , Urel – velocity of the 

oncoming flow relative to the moving baffler.      

 

VERIFICATION AND VALIDATION EXAMPLES 
 

For verifying and validating the new hydrodynamic element modelling, we compared its results with proven 

and reputable existing simulation results from (Housner 1957, Ibrahim 2005, Ganuga et al. 2014), and with 

experimental analysis (Ganuga et al. 2014).  

 

  Figure 1 verifies against (Housner 1957) the following hydrodynamics parameters of the pool 

40x10x10 m3 subjected to the unidirectional axial acceleration: fluid flow acceleration as a function of axial 

coordinate x, pressure distribution in a vertical direction y relating to the 4 sections x=const, and the overall 

force exerted against 4 sections x=const as a function of x. The acceleration distribution shows symmetry, 

while the pressure and the force – anti-symmetry, which are prescribed by the symmetry of boundary 

conditions. 3D results are consistent with the modeling according to Housner’s methodology. 

 

  The forced lateral unidirectional harmonic excitation of a rectangular tank was studied by 

(Ibrahim 2005). Figures 2-4 present the response of a fluid motion predicted by the present 3D numerical 

model and the Ibrahim’s model. Comparison made relate to the amplitudes of dynamic parameters, 

proportional to the sin (Ω𝑡), where Ω – is a frequency of excitation.  
 

  Figure 2 presents distributions of the free surface undimensioned elevations (surface waves 

height), where the 3D model predicts slightly higher peaks of the wave amplitude.   
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Figure 1. Comparative Analysis of a 3D Modeling with Housner’s Model Results 

The Upper Level Illustrates Housner’s Results, the Lower Level – 3D 

 

 

  Figure 3 presents axial distributions of the perturbation pressure and the total pressure, where the 

perturbed pressure is calculating excluding linear pressure component due to the tank motion as a rigid 

body. Both distributions are anti symmetric with respect to the axial coordinate, which is prescribed by the 

symmetry of boundary conditions. Both models present almost identical results, slightly different at the 

terminal points relating to the wall  

 

  Figure 4 presents the absolute value of the total hydrodynamic force exerted by the fluid on the 

container wall as a function on unidimensional excitation frequency. Agreement in the proximity of the 1st 

resonance frequency is better than for the higher frequencies. 
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Figure 2. Free Surface Undimensioned Elevation According 3D (left) and Ibrahim’s Models 

(right). (Ω - frequency of excitation, g – gravitational constant, t - time) 

 

 

 

 
Figure 3. Perturbation and Total Pressure Distributions in Axial Direction According to 3D (left) and 

Ibrahims’s Models (right) (rho – density of the fluid) 

 

The time histories of the wave height at the tank wall obtained from the experiment and LS-

DYNA modeling (Kozak et al. 2016) are compared with the 3D simulation results in Figure 5. The object 

is a rectangular tank of dimensions as 1.73 x 0.2 x 1.02 m3. The prescribed harmonic motions (amplitude 

𝜺𝟎, period T) were applied in longitudinal direction X. The forced oscillation period T was close to that of 

the fundamental mode of the fluid motion, T0, which affects dramatically the wave amplitude, making it 

comparable to the size of the tank.   

 

Comparison of the FE prediction of the wave height maximum reached during 7 seconds with the 

LS-DYNA modeling and experimental data are presented in Figure 5, left (T=0.7sec, 𝜺𝟎 = 𝟎. 𝟎𝟓𝐦).  The 

FE wave height prediction matches predictions made by LS-DYNA except some peak values which appear 

to be lower at LS-DYNA’s distributions. The latter could be explained by the presence of a dissipation in 

viscous fluid model used by commercial software. On a right comparison of a nonlinear and linear FE 

models to experimental data presented (T=1.4 sec, 𝜺𝟎 = 𝟎. 𝟎𝟓𝐦). Nonlinearity affects primarily the peak 

values matching relating peaks measured experimentally.  

 

 



27th International Conference on Structural Mechanics in Reactor Technology 

Yokohama, Japan, March 3-8, 2024 

Division III 

7 

 

 

Figure 4. Total Hydrodynamic Force Amplitude Exerted on the Wall  

 

 

 

 
 

Figure 5. FE Prediction of the Wave Height Maximum vs LS-DYNA Modeling (Left)          

and Experimental Data (Right). 

 

LARGE WATER POOL MODELING FOR SEISMIC ANALYSIS 

 
A rectangular pool of the size 37 x 27 x 10 m3 is studied under the impact of a 3D seismic waves 

characterized by three X, Y, Z components of acceleration and velocities as shown in Figure 6. 
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Figure 6. Time Dependent Acceleration and Velocity 

Components of Seismic Wave 

     
Analysis of a flow field distributions in a baffle free pool vs pool with 7 baffles (Figure 7) is presented in 

Figure 8. Baffles serve as a passive control capable to reduce energy of the sloshing motion as well as 

impact pressure exerted against wall as seen in Figure 8 by segmenting the flow field of the tank into a 

number of sub-flow fields bounded by internal walls (baffles). 

 

  
Figure 9. Pressure envelopes on a wall for the baffle free pool and a pool equipped with 7 baffles  

 
Figure 10 illustrates effect of elasticity on the total force applied to the baffle. 

 

The force acting against elastic wall exceeds its rigid wall counterpart, which correlates with the 

conclusions made in (Ganuga et al. 2014). Evaluation of the elastic baffle was processed using single eigen 

mode. The physical and geometric parameters of the baffle were used as the following: Young modulus 

E=200 GPa, Poisson coefficient μ=0.3, thickness h=15 mm, width b=1m, height h=8m.   

 

Fig.7 Water Tank With 7 Baffles 
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Figure 10. Total Force exerted against rigid (left) and elastic (right) baffles 

 

CONCLUDING REMARKS 

 

This paper focuses on the nonlinear sloshing wave problem in three dimensional baffled tanks based on a 

new implementation of a hydrodynamic finite element. The new hydrodynamic element is verified by 

comparing its results with the results from experiments and related literature. The sloshing characteristics 

are carried out, which are mainly concerned on the free surface elevation and hydrodynamic force exerted 

on the walls. The nonlinear hydrodynamic element is superior to the linear acoustic fluid elements as shown 

herein by the example against LS-DYNA and experiments.  

It was found that the presence of baffles has a non-ignorable influence on the pressure distribution 

and the overall hydrodynamic field. It is concluded that the baffles can effectively serve as a passive control 

capable to reduce energy of the sloshing motion as well as impact pressure exerted against wall by 

segmenting the flow field of the tank into a number of sub-flow fields bounded by internal walls. Effect of 

wall’s elasticity is essentially local, influencing mainly pressure distribution and the overall force applied 

to the internal wall surface. 
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