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1 INTRODUCTION 

1.1 Stochastic Modeling Terminology 

 

Typically, the term “stochastic process” is used in 

conjunction with the time evolution of a dynamic 

random phenomenon, while the term “stochastic 

field” is used in conjunction with the spatial varia-

tion of a stochastic (hyper) surface. A space-time 

stochastic process is a stochastic function having 

time and space as independent arguments. The term 

“space-time stochastic process” is synonymous with 

the term “time-varying stochastic field.” Stochastic 

field term fits well with stochastic boundary value 

problems, including the problem of the seismic free-

field motion local spatial variation within dense ar-

rays of recorders.  

 

Stochastic fields can be homogeneous or non-

homogeneous, isotropic or anisotropic, depending on 

whether their statistics are invariant or variant to the 

axis translation and, respectively, invariant or variant 

to the axis rotation in space. It should be noted that 

the stochastic field models proposed by Abrahamson 

(Abrahamson, 2005, 2006, 2007) for approximating 

the local spatial variation of seismic motions assume 

an isotropic stochastic field model that is invariant to 

translation and rotation in the horizontal ground sur-

face plane.  

 

For a seismic wave stochastic field, with an ampli-

tude denoted u(t) in time domain and U( )ω in fre-

quency domain, the (pair) cross-spectral density 

(CSD) function for two separated locations on 

ground surface j and k, Uj,UkS ( )ω , is expressed by 

 
1/ 2

Uj,Uk Uj,Uj Uj,Uj Uj,UkS ( ) [S ( )S ( )] ( )ω = ω ω Γ ω   (1) 

 

where Uj,UjS ( ) ω and Uk,UkS ( ) ω are the power spec-

tral density (PSD) of the seismic motion at locations 

j and k, and Uj,Uk ( )Γ ω  is the pair coherence function 

for locations j and k.  

 

More generally, the CSD function is a complex 

quantity. However, in many advanced engineering 

applications, since coherence function is assumed to 

be a real and positive quantity - this is used for qua-

drant symmetric and isotropic stochastic fields 

(Vanmarcke, 1983) - the CSD function is also real 

and positive. The coherence function, Uj,Uk ( )Γ ω , is a 

measure of the similarity of the two location motions 
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including both the amplitude spatial variation and 

the wave passage effects.  

The coherence function is a complex quantity, often 

called in earthquake engineering literature the “un-

lagged” coherence function (Abrahamson, 2005, 

2006, 2007). However, often in earthquake engineer-

ing practice, we use isotropic, “lagged” coherence 

functions that are real and positive quantity that in-

corporate only the amplitude spatial randomness ef-

fects with no consideration of the wave-passage ef-

fects. The numerical investigations shown in this 

EPRI report are based on “lagged” coherency models 

that consider only amplitude randomness aspects and 

neglect wave-passage aspects.  

 

Inversing equation 1, we get the definition of the co-

herence function between two arbitrary motions:  

 

{ }
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    (2)          

 

In equation 2 using the statistical expectation opera-

tor, denoted by E[.], we highlight that the CSD func-

tion, Uj,UkS ( )ω , at each frequency is identical with the 

second-order statistical moment (scaled covariance) 

of the motion amplitudes jU ( )ω  and
kU ( )ω  assumed 

to be two random variables.  

 

The last expression of coherence function in equa-

tion 2 (right-side term) at any given frequency is 

identical with the expression of a statistical correla-

tion coefficient between two random variables that 

can be found in any statistical textbook. This obser-

vation suggests that a series of efficient engineering 

numerical tools developed for digital simulation of 

(static) stochastic spatial variation fields based on 

factorization of covariance kernels could be ex-

tended for simulation of seismic motion spatial vari-

ation fields using factorization of coherence kernels 

at each frequency. 

1.2 Factorization of Coherency Kernels 

Several factorization techniques can be used for si-

mulating of complex pattern stochastic fields. A 

quite frequent approach  in engineering research li-

terature is to employ the Pearson differential equa-

tion for defining different types of stochastic series 

representations based on orthogonal Hermite, Le-

gendre, Laguerre, and Cebyshev polynomials. These 

polynomial expansions are usually called Askey 

chaos series.  

A major application of stochastic field decomposi-

tion theory is the representation of stochastic fields 

using the covariance kernel factorization. These co-

variance-based techniques have a large potential for 

practical engineering applications because they can 

be applied to any complex, static, or dynamic Gaus-

sian or non-Gaussian stochastic field.  

 

There are two competing stochastic simulation tech-

niques using the covariance kernel factorization:                

(1) Choleski factorization and (2) Spectral factoriza-

tion (called sometime Karhunen-Loeve expansion, 

or POD expansion) based on eigen-decomposition.  

 

Both techniques can be employed to simulate both 

static and dynamic stochastic fields including seis-

mic incoherent motions. A notable property of these 

two simulation techniques is that they can handle 

both real-valued and complex-valued covariance 

kernels. For simulating space-time processes (or dy-

namic stochastic fields), both covariance-based 

techniques can be employed.  

 

It should be noted that spectral factorization has the 

advantage of providing useful engineering insights. 

The covariance eigenvectors, also called spatial 

modes, describe the “wavelength” component struc-

ture of the stochastic spatial variation field. It should 

be noted that for random spatial variations with 

large correlation-lengths, the number of (cova-

riance) spatial modes required by the stochastic field 

eigen-series expansion convergence is reduced to 

only few modes. This provides often practical ad-

vantages. 

 
2 SEISMIC SSI ANALYSIS METHODOLOGY 
 

The implementation of incoherent SSI analysis is 

based on the spectral factorization of the coherency 

kernel at each selected frequency. The seismic inco-

herent SSI analysis methodologies that are described 

below were implemented in the ACS SASSI code 

(Ghiocel, 2007, Short, Hardy, Mertz and Johnson, 

2006, 2007) that is currently used for SSI analysis of 

a number of nuclear power plants in US and over-

sees.   

 

In this section the basic stochastic modeling equa-

tions are described using the same notations used by 

Tseng and Lilhanand (Tseng and Lilhanand, 1997). 

The main differences in notation are that for struc-

ture dofs we use superscript s instead of subscript s, 
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and for ground motion at interaction nodes we use 

superscript g instead of subscript g.  

 

Let’s consider first the free-field motion.  

 

The coherent free-field motion at any interaction 

node dof k, g,c

kU ( )ω , is computed by:  

 
g,c g,c g

k k 0U ( ) H ( )U ( )ω = ω ω           (3) 

 

where g,cH ( )ω  is the (deterministic) complex cohe-

rent ground transfer function vector at interface 

nodes and g

0U ( )ω  is the complex Fourier transform 

of the control motion. 

 

Similarly, the incoherent free-field motion at any in-

teraction node dof k, g,i

kU ( )ω : 

 
g,i g,i g

k k 0U ( ) H ( )U ( )ω = ω ω�            (4) 

 

where g,iH ( )ω�  is the (stochastic) incoherent ground 

transfer function vector at interaction node dofs and 
g

0U ( )ω  is the complex Fourier transform of the con-

trol motion.  

 

The main difference between coherent and incohe-

rent free-field transfer function vectors is that the 
g,cH ( )ω is deterministic quantity while g,i

kH ( )ω� is a 

stochastic quantity (tilda hat marks this) that in-

cludes deterministic effects due to the seismic plane-

wave propagation, but also stochastic effects due to 

incoherent motion spatial variation in horizontal 

plane. Thus, the incoherent free-field transfer func-

tion at any interaction node can be defined by:   

 
g,i

kH ( )ω� g,c

k kS ( )H ( )= ω ω           (5) 

 

where kS ( )ω  is a frequency-dependent quantity that 

includes the effects of the stochastic spatial variation 

of free-field motion at any interaction node dof k due 

to incoherency.   

 

In fact, in the numerical implementation based on 

the complex frequency approach, kS ( )ω  represents 

the complex Fourier transform of relative spatial 

random variation of the motion amplitude at the inte-

raction node dof k due to incoherency. Since these 

relative spatial variations are random,
kS ( )ω , is sto-

chastic in nature. The stochastic kS ( )ω  can be com-

puted for each interaction node dof k using spectral 

factorization of coherency matrix computed for all 

SSI interaction nodes. 

  

For any interaction node dof k, the stochastic spatial 

motion variability transfer function g,i

kH ( )ω� in com-

plex frequency domain is described by the product of 

the stochastic eigen-series expansion of the spatial 

incoherent field times the deterministic complex co-

herent ground motion transfer function:   

 

g,i

kH ( )ω�
M

g,c

j,k j j k

j 1

[ ( ) ( ) ( )]H ( )θ
=

= Φ ω λ ω η ω ω∑    (6) 

where 
j( )λ ω  and j,k ( )Φ ω  are the j-th eigenvalue 

and the j-th eigenvector component at interaction 

node k. The factor j( )θη ω in equation 6 is the random 

phase component associated with the j-th eigenvec-

tor that is given by j j( ) exp(i )θη ω = θ  in which the 

random phase angles are assumed to be uniformly 

distributed over the unit circle, j( ) U[ , ]θ ω −π π∼ . 

 

The number of coherency matrix eigenvectors, or in-

coherent spatial modes, could be either all modes or 

a reduced number of modes M depending on the ei-

gen-series convergence.   

 

Let’s consider now the structural SSI response.  

 

For a coherent motion input, assuming a number of 

interaction nodes equal to N, the complex Fourier 

SSI response at any structural dof i, s,c

iU ( )ω , is com-

puted by the superposition of the effects produced by 

the application of the coherent motion input at each 

interaction node k:  

 
N

s,c s g,c

i i,k k

k 1

N
s g,c g

i,k k 0

k 1

U ( ) H ( )U ( )

          H ( )H ( )U ( )

=

=

ω = ω ω

= ω ω ω

∑

∑

      (7) 

 

where the sH ( )ω  matrix is the structural complex 

transfer function matrix given unit inputs at interac-

tion node dofs. The component 
s

i,kH ( )ω  denotes the 

complex transfer function for the i-th structural dof 

if a unit amplitude motion at the k-th interaction 

node dof is applied. For incoherent motion input, the 

complex Fourier SSI response at any structural dof i, 
s,i

iU ( )ω , is computed similarly by the superposition 
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of the effects produced by the application of the in-

coherent motion input at each interaction node dof k:   

 
N

s,i s g,i

i i,k k

k 1

N M
s g,c g

i,k j,k j j k 0

k 1 j 1

U ( ) H ( )U ( )

H ( )[ ( ) ( ) ( )] H ( )U ( )

=

θ

= =

ω = ω ω =

ω Φ ω λ ω η ω ω ω

∑

∑ ∑

 (8) 

 

Obviously that in equation 8, s

i,kH ( )ω  is the same as 

in equation 7, since the structural transfer matrix 

does not depend on seismic input motion characte-

ristics. 

 

Since the implementation uses equation 6 that is de-

rived in free-field before the SSI analysis is started, 

the number of extracted coherency matrix eigenvec-

tors, or incoherent spatial modes, can be as large as 

is desired by the user with a very negligible impact 

on the SSI analysis run time. By default, all the in-

coherent spatial modes are included. Consideration 

of all incoherent spatial modes improves the incohe-

rent SSI accuracy and produces a very accurate re-

covery of the free-field coherency matrix at interac-

tion nodes; this can be checked by the user for each 

calculation frequency.  

 

The stochastic simulation approach equations 4 and 

6 to generate random incoherent input free-field mo-

tions. Using Monte Carlo simulation, a set of ran-

dom incoherent motion samples are generated at in-

teraction nodes. These incoherent motion random 

samples are obtained by simulating random phase 

angles in equation 6. For each incoherent motion 

random sample an incoherent SSI analysis is per-

formed. Finally, the mean SSI response is computed 

by statistical averaging of the response quantities of 

interest. Thus, the stochastic simulation approach 

implies that a set of statistical incoherent SSI analys-

es are required. The final mean SSI response is ob-

tained by statistical averaging of SSI response ran-

dom samples. 

 

To speed up the set of SSI simulations, a fast restart 

option for reanalysis was introduced. This restart op-

tion bases on the fact that for each incoherent motion 

SSI run only seismic load vector changes, while the 

soil impedance matrix and the structural transfer 

functions with respect to interaction node excitations 

remain the same. If the restart option is used the run 

time for each SSI analysis drops to only 1/3 to 1/5 of 

the initial run time. Thus, it is possible to do up to 5 

stochastic SSI simulations in the time of a single in-

itiation SSI analysis run. This provides quite reason-

able run times for the stochastic simulation ap-

proach.   

 

The deterministic approach is a fast incoherent SSI 

analysis approach that approximates the mean SSI 

response using a single SSI analysis run. However. 

the deterministic approach accuracy is limited to ri-

gid foundation situations as explained hereafter. 

 

The deterministic approach (called in EPRI studies 

AS (from algebraic sum) is based on a simple, engi-

neering practical rule that has been often accepted in 

the engineering analysis practice for NPP Seismic 

PRA reviews, namely that “Median Input produces 

Median Response”.  

 

The validity of the deterministic approach based on 

the simple rule “median input provides median out-

put” was investigated in two recent EPRI studies 

(Short, Hardy, Mertz and Johnson, 2007). It was 

concluded that for nuclear structural models with ri-

gid mats, the deterministic approach provides very 

close results for mean SSI response to a rigorous 

stochastic analysis. 

 

The two EPRI studies also investigated the statistical 

variation of SSI responses and the statistical conver-

gence of the stochastic simulation approach. It was 

shown that the use of only five stochastic simulation 

samples provides a reasonably accurate prediction of 

the mean SSI responses. 

 

To implement the “median input produces median 

output” rule for incoherent SSI analysis, AS com-

bines the incoherent spatial modes using a linear al-

gebraic summation as described in equation 6 as-

suming zero random phase values (the zero phases 

are the statistical mean phase values). For AS equa-

tion 6 simplifies to the following form:  

 

g,i

kH ( )ω�
M

g,c

j,k j k

j 1

[ ( ) ( )]H ( )
=

= Φ ω λ ω ω∑       (9) 

 

Equation 9 shows that as the result of assuming zero 

phase angles, the incoherent spatial modes are scaled 

deterministically by the values of the square roots of 

the coherency matrix eigenvalues that are also equal 

to the standard deviations of the spatial modes that 

are measures of their contributions to the total mo-

tion spatial variability.  
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As a consequence on the zero phase assumption, the 

deterministic approach is capable to reproduce ex-

actly the free-field coherency matrix if all spatial 

modes are employed (assuming that no numerical er-

rors occur in the calculation of the eigenvectors of 

coherency matrix). 
 
3 ILLUSTRATIVE APPLICATIONS 
 

Currently, the above described seismic incoherent 

SSI approaches are employed in several industry 

projects for evaluating the seismic SSI response of 

the different nuclear reactor facilities, including the 

new Westinghouse AP1000 nuclear power plant 

(Short, Hardy, Mertz and Johnson, 2007, Ghiocel et 

al., 2009).  

 

Several plane-wave motion incoherency models 

were considered: i) the Luco-Wong anisotropic wave 

incoherency model (Luco and Wong, 1986) and, ii) 

the Abrahamson isotropic wave incoherency models, 

available for different soil conditions (Abrahamson, 

2005, 2006, 2007). In the investigated case studies, 

the computed incoherent SSI responses are com-

pared with coherent SSI responses to illustrate the 

effects of motion incoherency on seismic structural 

response. The SSI results in terms of transfer func-

tions, acceleration response spectra and structural 

forces are obtained to study incoherency effects. 

 

3.1 Axisymmetric Reactor Building Example 

 
A reactor building with axisymmetric Containment 
Shell (CS) and Internal Structure (IS) was consi-
dered using a Luco-Wong incoherency model. The 
coherence parameter was assumed to be 0.10. The 
soil was modeled as a viscous elastic half-space 
with a Vs = 1000 fps. No wave passage was consi-
dered.  

Figure 1. Coherent vs. Incoherent ISRS at Top of IS 

 
The deterministic approach was employed to com-
pute motion incoherency effects. The computed co-
herent and incoherent acceleration in-structure re-
sponse spectra (ISRS) at the top of internal structure 
(IS) and top of containment shell (CS) are compared 
in Figures 1 and 2.  
 

Figure 2. Coherent vs. Incoherent ISRS at Top of CS 

 
The incoherent SSI analysis results indicate a signif-
icant reduction of ISRS in higher frequency ranges, 
although the incoherency effects for a 0.10 cohe-
rence parameter are reduced. These results indicate 
that there is a significant reduction of the ISRS due 
to motion incoherency effects.  
 

3.2 Nuclear Complex Building Example 

 

This example illustrates the effects of motion inco-

herency for a nuclear complex building founded on a 

rock site. In addition to the two EPRI studies (Short, 

Hardy, Mertz and Johnson, 2006, 2007) that investi-

gated a nuclear complex building using a multiple 

stick model with a perfectly rigid basemat, herein we 

consider a detailed finite element structural model 

with a flexible basemat.   

 

The seismic input motion is very rich in high-

frequency components. The 2007 Abrahamson inco-

herency model that is applicable to rock site condi-

tions was applied. No wave passage was considered.  

The results of stochastic approach were based on sta-

tistical averaging of a set of random realizations.  

 

It should be noted that for flexible foundations, the 

incoherency-induced stochasticity of the basemat 

motion is driven by the local spatial variations (point 
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variations) of free-field motion and, therefore, is 

much more complex and random, with an un-

smoothed spatial variation pattern (kinematic SSI is 

reduced, so differential free-field motions are less 

constrained by the basemat). For rigid foundations 

the incoherency-induced stochasticity of the basemat 

motion is driven by the global or rigid body spatial 

variations (integral variations) of free-field motion 

and, therefore, is less complex and random, with a 

smoothed spatial variation pattern (kinematic SSI in-

teraction is large, so differential free-field motions 

are highly constrained by the rigid basemat). There-

fore, herein we employed the stochastic incoherent 

SSI approach.  

 

 
Figure 3. Incoherent vs. Coherent ISRS in X-Direction at 

Lower Elevation for 3D Input in X, Y and Z Directions 

 

 
Figure 4. Incoherent vs. Coherent ISRS in X-Direction at 

Higher Elevation for 3D Input in X, Y and Z Directions 

 

Figures 3 through 6 show the computed ISRS in the 

X and Z directions at two locations within the nuc-

lear complex building. In these figures we compared 

the (deterministic) coherent SSI response with the 

individual, stochastic incoherent SSI responses and 

with the mean incoherent SSI response.  

 
Figure 5. Incoherent vs. Coherent ISRS in Z-Direction at 

Lower Elevation for 3D Input in X, Y and Z Directions 

 

 
 

Figure 6. Incoherent vs. Coherent ISRS in Z-Direction at 

Higher Elevation for 3D Input in X, Y and Z Directions 

 

These figures provide an useful information on the    

stochasticity of computed FRS due the motion inco-

herency effects. It should be noted that ISRS sto-

chasticity diminishes for higher elevations.  

 

The coefficients of variation of FRS vary between 

about 5% (high elevations) to up about 20% (ground 

elevations). It should be also noted that the ISRS 

amplitude has a skewed probability distribution, i.e. 

lognormal could be a good approximation. Thus, 
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few samples could have much larger spectral peaks 

than the others, especially at lower elevations where 

the frequency content of motions has a broader fre-

quency band.  

 

As expected, the mean incoherent ISRS is much 

lower than the coherent ISRS, especially in the high-

frequency range above 20 Hz. Figures 7 and 8 show 

the mean incoherent ISRS and mean-plus/minus one 

standard deviation ISRS at a higher elevation for on-

ly 5 random SSI simulations. Both ISRS in X and Z 

directions are shown.  

 

 
Figure 7 Incoherent vs. Incoherent ISRS in X Direction   

at Higher Elevation for 5 Stochastic Samples 

 

 
Figure 8 Incoherent vs. Incoherent ISRS in Z Direction  

at Higher Elevation for 5 Stochastic Samples 

 

It should be noted that the relative statistical conver-

gence error expressed by the coefficients of variation 

of the estimate of the mean ISRS computed for only 

5 simulations is relatively small at the basemat level 

(about 10 percents for a 70%-80% confidence level) 

and practically negligible at higher elevations (about 

5 percents for a 70%-80% confidence level). The 

above observation is valid for both the SSI response 

in X and Z directions. 

It should be noted that the relative statistical errors 

for the mean FRS computed using only 5 simula-

tions appear to be about the same magnitude with 

the numerical inaccuracies coming from the complex 

TF interpolation scheme used herein for computing 

the complex response at 2368 Fourier frequencies 

based on the computed TF at 220 selected frequen-

cies. Therefore, it appears as a rationale to include 

interpolation modeling error by performing addition-

al runs with different interpolation options and then, 

average the results.  These additional runs have a to-

tally negligible impact on the overall SSI analysis 

run time. 

 

It should be also noted, that in comparison with the 

axisymmetric RB for which the incoherent ISRS 

were lower than coherent ISRS for all frequencies, 

for the nuclear complex with mass eccentricities, the 

incoherent ISRS can be higher than the coherent 

ISRS for frequencies that correspond to torsional 

SSI modes for horizontal inputs and rocking SSI 

modes for vertical inputs. 

  
4  CONCLUDING REMARKS 
 

Based on the investigated case studies, the qualita-

tive effects of motion incoherency effects are as fol-

lows: i) for horizontal components a reduction in 

excitation translation along the input direction con-

comitantly with an increase in torsional excitation 

and a slight reduction in foundation rocking excita-

tion, and ii) for vertical component a reduction in 

excitation translation in vertical direction concomi-

tantly with an increase of rocking excitation. Typi-

cally, the effect on motion incoherency is highly 

beneficial since reduces the seismic ISRS for high-

frequency seismic inputs, particularly for rock sites.   

 

For rigid foundations the incoherency-induced sto-

chasticity of the basemat motion is driven by the 

global or rigid body spatial variations (integral varia-

tions) of free-field motion and, therefore, is less 

complex and random than free-field motion. The ri-

gid foundation motion has a smoothed spatial varia-

tion pattern since the kinematic SSI interaction is 

large. Thus, the differential free-field motions are 

highly constrained by the rigid basemat, and because 

of this they reduce the pattern complexity of the     

local motion spatial stochasticity. 

 

For flexible foundations, the incoherency-induced 

stochasticity of the basemat motion is driven by the 
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local spatial variations of free-field motion and, 

therefore, is more complex and random, following 

closely the free-field motion pattern. The flexible 

foundation motion has a less smoothed spatial varia-

tion pattern since kinematic SSI is reduced. Thus, 

the differential free-field motions are less con-

strained by the basemat, and because of this they 

maintain the pattern complexity of the local motion 

spatial stochasticity.  

 

To accurately capture the statistical nature the local 

spatial variations of the incoherent motion that are 

directly transmitted into the flexible basemat motion, 

we suggested the application of the stochastic inco-

herent SSI approach, i.e. Simulation approach in 

EPRI studies.  

 

Based on EPRI studies (Short, Hardy, Mertz and 

Johnson, 2006, 2007) and our in-house investiga-

tions, we recommend the application of the stochas-

tic incoherent SSI approach for SSI models with 

both rigid and flexible foundations. The stochastic 

approach is highly accurate and relatively fast since 

it bases on quick SSI reanalyses.  

 

The two deterministic incoherent SSI approaches, 

AS or SRSS used in the EPRI studies (Short, Hardy, 

Mertz and Johnson, 2006, 2007), could be applied to 

rigid foundations only as decribed in the conclusions 

of the last EPRI report. As demonstrated by the 

EPRI results, these two deterministic incoherent SSI 

approaches provide slightly conservative results for 

rigid foundations, more visible for incoherent SSI 

motions in vertical direction (Ghiocel, 2007). 

 

We recommend the following: 

 

1) Use the stochastic approach with at least five 

simulations. However, if only five samples 

are considered, then, for such small sample 

sizes, attention should be given to avoid the 

strong influences from “outliers”. In addi-

tion, we suggest the use of some simple 

screening criteria to ensure that there is no 

significant bias included.  

 

2) To capture the modeling error produced by 

the interpolation scheme used for complex 

transfer function calculations, we suggest 

considering additional runs with different 

transfer function interpolation selections. 

Averaging SSI responses from these addi-

tional runs avoids potential numerical inac-

curacies due to the selection of SSI frequen-

cies or due to interpolation modeling error in 

transfer function calculations. Such addition-

al runs have a negligible impact on the over-

all SSI analysis run time. 

 

The above conclusions add to the conclusions of the 

EPRI studies (Short, Hardy, Mertz and Johnson, 

2006, 2007) that investigated the seismic motion in-

coherency effects on the SSI response of an AP1000-

based multiple stick model with a rigid basemat. In 

the EPRI studies the effect of foundation flexibility 

was not considered. Currently, we investigate the ef-

fect of motion incoherency for embedded founda-

tions. 
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