Critical Modeling and Implementation Aspects for Seismic Incoherent SSI Analysis of Nuclear Structures with Surface and Embedded Foundations for Rock and Soil Sites

Dr. Dan M. Ghiocel

Email: dan.ghiocel@ghiocel-tech.com Phone: 585-641-0379

1

Ghiocel Predictive Technologies Inc.

Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com

Complementary to 2014 DOE NPH SSI Presentation

2016 DOE Natural Phenomena Hazards Meeting Germantown, MD, October 18-19, 2016

Purpose of This Presentation:

To answer to the following important questions:

- What is the meaning of "incoherent motion"?
- How important is the foundation size influence on ISRS?
- How important is the seismic input directionality on ISRS?
- Is incoherency influencing the SSSI effects on ISRS, inter-building gap sizing, and computed soil pressures?
- How significant are incoherency effects on the o-p bending moments of foundation mats and walls?

The 2016 ACS SASSI NQA V3 software was used.

The new version can run 20-25 incoherent stochastic simulations in a single SSI run for all X, Y and Z directions. This is 15-20 times faster than using a SSI restart for each simulation. What took 8 months for the APR1400 NI incoherent SSI project using the simple EPRI INCOH SRSS approach, can take only 8 days or less, using also a much more rigorous simulation approach.

Coherent vs. Incoherent Wave Propagation Models

3D Rigid Body Soil Motion (Idealized)

1 D Wave Propagation Analytical Model (Coherent)

Vertically Propagating S and P waves (1D)

- No other waves types included
- No heterogeneity random orientation and arrivals included
- Results in a rigid body soil motion, even for large-size foundations

3D Random Wave Field Soil Motion (Realistic)

3D Wave Propagation Data-Based Model (Incoherent – Database-Driven Adjusted Coherent)

Includes real field records information, including implicitly motion field heterogeneity, random arrivals of different wave types under random incident angles.

ANIMATIONS

Motion Incoherency Simulation in ACS SASSI

The complex frequency response is computed as follows:

Background on 2007 EPRI Validated Incoherent SSI Approaches Based on "Industry Consensus"

The 2007 EPRI validated approaches were based on industry consensus. The EPRI industry team uses three codes: Classilnco, ACS SASSI and SASSI Bechtel codes. The industry *consensus* was built around the SRSS approach that assumes zero phasing for the SSI complex responses.

To match the team *consensus results* based on SRSS approaches, the Stochastic Simulation approach was used only with the "phase adjustment" option, that basically is zeroing the complex response phasing. *The "theoretically exact" solution should include no phase adjustment*

It should be understood that by neglecting the complex random phasing, the incoherent SSI responses are less incoherent, and by this creates a bias toward coherent responses, that most likely is conservative for practical applications, but this is not always the case, as discussed herein.

How Many Modes Should Be Considered for SRSS Approaches? SS Considers All!

Low Frequency/Large Wavelengths/Only Few Low Order Incoherency Modes

High Frequency/Short Wavelengths/Low and High Order Incoherency Modes

Is the foundation sufficiently rigid to neglect high order modes at high frequency due to kinematic interaction effects?

Comparative 20 vs. 40 Incoherent Mode Solution Using SRSS Deterministic Approach

Is the 40 Modes SRSS Solution Convergent?

Motion Incoherency Differential Phasing Effects

Differential Phasing Effects for Same Harmonic Inputs at Supports with Zero and Nonzero Time Lags

Symmetric Structure Subjected to Harmonic Inputs at Supports

Effect of Zeroing Phases for Low-Mid Frequencies

For dominant single mode situations (in lower frequency range), the *neglect of the* (*differential*) phases that produce random amplitude variations in frequency space, basically changes the problem and departs from reality.

Incoherency Simulation With Zero-Phasing (Loss of Physics)

Incoherency Simulation With Random Phasing (No Loss of Physics)

2016 COPYRIGHT GHIOCEL PREDICTIVE TECHNOLOGIES, INC. ALL RIGHT RESERVED.

ANIMATIONS

Effects of Number of SSI Frequencies on Simulated Random Phasing

Records show significant *Differential Phases (low-correlated)* for closely-spaced SSI frequencies

Typical SSI analysis interpolation filters *Differential Phases* (high-correlated) for closely-spaced SSI frequencies. *We suggest use 200-300 SSI frequencies in the ACS SASSI manual.*

2016 COPYRIGHT GHIOCEL PREDICTIVE TECHNOLOGIES, INC. ALL RIGHT RESERVED.

Incoherent SSI Response Phasing Effects on Reduced-Size RB Complex with 50m Width

2016 COPYRIG Basemate Corner of NIes Complex reserved.

Incoherent SSI Response Phasing Effects on Reduced-Size RB Complex with 50m Width

Embedded SSI Models – Node Numbering Issue

SAME node numbering order for all levels

DIFFERENT node numbering order for all levels

Embedded SSI Models – Node Numbering Issue

SAME node numbering order for all levels

Mode 9 at 11.72 Hz

DIFFERENT node numbering order for all levels

All Levels Mode9 11.719Hz X

REMARK: The sign of the mode shapes is random, + or -, depending on the node numbering. Deterministic SRSS approach uses "arbitrary" criteria to maintain consistency between levels.

Mode 1 Sign Effect on Modal ATF & ISRS for X-Dir

Radial vs. Directional Coherency Models

Incoherent Motion Directionality Effects on ISRS for Large-Size RB Complex W/ Zeroing Phase

2016 COPYRIGHT GHIOCEL PREDICTIVE TECHNOLOGIES, INC. ALL RIGHT RESERVED.

2D Probabilistic Nonlinear Site Response (ACS SASSI OptionPRO & NON) for Site-Specific Coherency Models

Developing Site-Specific Incoherency Models for NPP Area Using 2D/2V Probabilistic Soil Profiles (Vs, D)

Horizontal Mean Soil Layering (2D/2V Homogeneus Correlated Fields)

>>> Generic Coherency Models, Statistical, as Abrahamson, Luco, others

Slopped Mean Soil Layering (2D/2V NonHomogeneus Correlated Fields) >>> Site-Specific Coherency Models, Physics-based Modeling

0

10

2016 COPYRIGHT GHIOCEL PREDICTIVE TECHNOLOGIES, INC. ALL RIGHT RESERVED.

30

40

frequency Hz

50

60

70

20

Effects of Incoherency on Basemat Bending

Combined THD at Group 1 - COHERENT 5 ft. EConcrete Y-Direction - Transversal Axis - Frame 1474 Combined THD at Group 1 - INCOHERENT 5 ft. EConcrete Y-Direction - Transversal Axis - Frame 1474

Incoherent vs. Coherent Seismic SSSI Effects

RB Complex Coherent vs. Incoherent SSSI Effects on ISRS on Top of Internal Structure – Y and Z Directions

RB Complex Coherent vs. Incoherent SSSI Effects on Bending Moments in Embedded Wall Near ABW Bldg.

Conclusions for Investigated Cases

- Incoherent motion describes a realistic, 3D random wave field motion.
- For realistic, elastic foundations, truncating the number of incoherent modes could produce unconservative results in the high-frequency range.
- Zeroing the incoherent motion phasing usually produces overly conservative results in the mid-frequency range at the price of the loss of physics. Zerophasing approaches are not applicable to multiple time history analysis of RCL systems.
- Incoherent SSSI effects could be significant for soil sites by amplifying some SSI modes. Affect ISRS and soil pressures. SSSI results also indicate the need for larger inter-building gaps, about 2 times.
- Incoherent SSI responses produces significantly larger bending moments in the foundation mats.
- Incoherency motion directionality, radial vs. directional, produces less significant effects on SSI response.
- Incoherent SSI analysis can be improved by site-specific incoherency models 28 2016 COPYRIGHT GHIOCEL PREDICTIVE TECHNOLOGIES, INC. ALL RIGHT RESERVED